Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions

被引:29
作者
Calderaro, F. [1 ,2 ]
Keser, M. [1 ]
Akeroyd, M. [1 ]
Bevers, L. E. [1 ]
Eijsink, V. G. H. [3 ]
Varnai, A. [3 ]
van den Berg, M. A. [1 ]
机构
[1] DSM Biotechnol Ctr, PP 699-0310,Alexander Fleminglaan 1, NL-2613 AX Delft, Netherlands
[2] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Mol Enzymol, Groningen, Netherlands
[3] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, As, Norway
基金
欧盟地平线“2020”;
关键词
Lytic polysaccharide monooxygenase; Enzyme assay; Cellulose; Lignocellulosic biomass; Thielavia australiensis; Corn stover; H2O2; LYTIC POLYSACCHARIDE MONOOXYGENASES; FUNCTIONAL-CHARACTERIZATION; H2O2-DRIVEN DEGRADATION; ENZYMATIC-HYDROLYSIS; BIOMASS; CELLULOSE; ENZYMES; ACID; PRETREATMENT; CONVERSION;
D O I
10.1186/s13068-020-01836-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe discovery of lytic polysaccharide monooxygenases (LPMO) has changed our perspective on enzymatic degradation of plant biomass. Through an oxidative mechanism, these enzymes are able to cleave and depolymerize various polysaccharides, acting not only on crystalline substrates such as chitin and cellulose, but also on other polysaccharides, such as xyloglucan, glucomannan and starch. Despite their widespread use, uncertainties related to substrate specificity and stereospecificity, the nature of the co-substrate, in-process stability, and the nature of the optimal reductant challenge their exploitation in biomass processing applications.ResultsIn this work, we studied the properties of a novel fungal LPMO from the thermophilic fungus Thielavia australiensis, TausLPMO9B. Heterologous expression of TausLPMO9B in Aspergillus niger yielded a glycosylated protein with a methylated N-terminal histidine showing LPMO activity. High sequence identity of the AA9 domain to that of MtLPMO9B (MYCTH_80312) from Myceliophthora thermophila (84%) indicated strictly C1-oxidizing activity on cellulose, which was confirmed experimentally by the analysis of products released from cellulose using HPAEC. The enzyme was stable and active at a pH ranging from 4 to 6, thus matching the conditions commonly used in industrial biomass processing, where a low pH (between 4 and 5) is used due to the pH-optima of commercial cellulases and a desire to limit microbial contamination.ConclusionWhile the oxidative cleavage of phosphoric acid swollen cellulose (PASC) by TausLPMO9B was boosted by the addition of H2O2 as a co-substrate, this effect was not observed during the saccharification of acid pretreated corn stover. This illustrates key differences between the lab-scale tests with artificial, lignin-free substrates and industrial settings with lignocellulosic biomass as substrate.
引用
收藏
页数:17
相关论文
共 75 条
[1]  
Aehle W, 2009, Glucoamylase variants with altered properties., Patent No. [WO-2009/048488-A1, 2009048488]
[2]  
[Anonymous], 2004, INT J CANC
[3]   LIGATION-INDEPENDENT CLONING OF PCR PRODUCTS (LIC-PCR) [J].
ASLANIDIS, C ;
DEJONG, PJ .
NUCLEIC ACIDS RESEARCH, 1990, 18 (20) :6069-6074
[4]   Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina [J].
Bennati-Granier, Chloe ;
Garajova, Sona ;
Champion, Charlotte ;
Grisel, Sacha ;
Haon, Mireille ;
Zhou, Simeng ;
Fanuel, Mathieu ;
Ropartz, David ;
Rogniaux, Helene ;
Gimbert, Isabelle ;
Record, Eric ;
Berrin, Jean-Guy .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[5]   Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris [J].
Berka, Randy M. ;
Grigoriev, Igor V. ;
Otillar, Robert ;
Salamov, Asaf ;
Grimwood, Jane ;
Reid, Ian ;
Ishmael, Nadeeza ;
John, Tricia ;
Darmond, Corinne ;
Moisan, Marie-Claude ;
Henrissat, Bernard ;
Coutinho, Pedro M. ;
Lombard, Vincent ;
Natvig, Donald O. ;
Lindquist, Erika ;
Schmutz, Jeremy ;
Lucas, Susan ;
Harris, Paul ;
Powlowski, Justin ;
Bellemare, Annie ;
Taylor, David ;
Butler, Gregory ;
de Vries, Ronald P. ;
Allijn, Iris E. ;
van den Brink, Joost ;
Ushinsky, Sophia ;
Storms, Reginald ;
Powell, Amy J. ;
Paulsen, Ian T. ;
Elbourne, Liam D. H. ;
Baker, Scott E. ;
Magnuson, Jon ;
LaBoissiere, Sylvie ;
Clutterbuck, A. John ;
Martinez, Diego ;
Wogulis, Mark ;
de Leon, Alfredo Lopez ;
Rey, Michael W. ;
Tsang, Adrian .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :922-U222
[6]   Molecular mechanism of the chitinolytic peroxygenase reaction [J].
Bissaro, Bastien ;
Streit, Bennett ;
Isaksen, Ingvild ;
Eijsink, Vincent G. H. ;
Beckham, Gregg T. ;
DuBois, Jennifer L. ;
Rohr, Asmund K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (03) :1504-1513
[7]   Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass [J].
Bissaro, Bastien ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Eijsink, Vincent G. H. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2018, 82 (04)
[8]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/nchembio.2470, 10.1038/NCHEMBIO.2470]
[9]   Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity [J].
Borisova, Anna S. ;
Isaksen, Trine ;
Dimarogona, Maria ;
Kognole, Abhishek A. ;
Mathiesen, Geir ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Payne, Christina M. ;
Sorlie, Morten ;
Sandgren, Mats ;
Eijsink, Vincent G. H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) :22955-22969