Kato's inequality when Δu is a measure

被引:43
作者
Brezis, H
Ponce, AC
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
关键词
D O I
10.1016/j.crma.2003.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical version of Kato's inequality in order to allow functions it u epsilon L-loc(1) such that Deltau is a Radon measure. This inequality has been recently applied by Brezis, Marcus, and Ponce to study the existence of solutions of the nonlinear equation -Deltau + g(u) = mu, where mu is a measure and g: R --> R is a nondecreasing continuous function. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:599 / 604
页数:6
相关论文
共 8 条
[1]  
Ancona A., 1979, COMMUN PART DIFF EQ, V4, P321, DOI DOI 10.1080/03605307908820097
[2]   Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :539-551
[3]  
Brezis H., 2003, Diff. Integ. Equ., V16, P1
[4]  
BREZIS H, UNPUB NONLINEAR ELLI
[5]  
Brezis H., 1996, Adv. Differential Equations, V1, P73
[6]  
DUPAIGNE I, IN PRESS SELECTA MAT
[7]  
FUKUSHIMA M, 1991, OSAKA J MATH, V28, P517
[8]   SCHRODINGER OPERATORS WITH SINGULAR POTENTIALS [J].
KATO, T .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (1-2) :135-148