Nanoscale heat transfer and nanostructured thermoelectrics

被引:9
作者
Chen, G [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
ITHERM 2004, VOL 1 | 2004年
关键词
nanoscale heat transfer; superlattices; Peltier coolers; heterostructures; thermal conductivity; thermoelectrics;
D O I
10.1109/ITHERM.2004.1319148
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer at nanoscales differs significantly from that in macroscales because of size effects on the phonon and electron transport. Nanoscale heat transfer effects have significant implications for the microelectronic and microphotonic industries, from the thermal management, the device design and reliability, and the active cooling considerations. Past studies have shown that heat conduction in nanostructures can be significantly impeded below that of the predictions of the Fourier theory. Such size effects imply higher device temperatures than anticipated and demands more stringent thermal management measures. On the other hand, similar size effects can be exploited for developing highly efficient thermoelectric materials for direct cooling. This paper starts with a discussion some nanoscale heat transfer effects and their impacts on the device performance, particularly using thermal conductivity reduction in superlattices as an example, followed by a review of recent developments in nanostructured thermoelectric materials.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 70 条
[1]   Effect of phonon confinement on the thermoelectric figure of merit of quantum wells [J].
Balandin, A ;
Wang, KL .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6149-6153
[2]   MONOLITHICALLY PELTIER-COOLED VERTICAL-CAVITY SURFACE-EMITTING LASERS [J].
BERGER, PR ;
DUTTA, NK ;
CHOQUETTE, KD ;
HASNAIN, G ;
CHAND, N .
APPLIED PHYSICS LETTERS, 1991, 59 (01) :117-119
[3]  
Berman R., 1976, THERMAL CONDUCTION S
[4]   Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices [J].
Bies, WE ;
Radtke, RJ ;
Ehrenreich, H .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (03) :1498-1503
[5]   Thermal conductivity of symmetrically strained Si/Ge superlattices [J].
Borca-Tasciuc, T ;
Liu, WL ;
Liu, JL ;
Zeng, TF ;
Song, DW ;
Moore, CD ;
Chen, G ;
Wang, KL ;
Goorsky, MS ;
Radetic, T ;
Gronsky, R ;
Koga, T ;
Dresselhaus, MS .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (03) :199-206
[6]  
Borca-Tasciuc T, 2001, MICROSCALE THERM ENG, V5, P225
[7]   Thermal management of microwave power heterojunction bipolar transistors [J].
Bozada, C ;
Cerny, C ;
DeSalvo, G ;
Dettmer, R ;
Ebel, J ;
Gillespie, J ;
Havasy, C ;
Jenkins, T ;
Ito, C ;
Nakano, K ;
Pettiford, C ;
Quach, T ;
Sewell, J ;
Via, GD ;
Anholt, R .
SOLID-STATE ELECTRONICS, 1997, 41 (10) :1667-1673
[8]   EFFECT OF SUPERLATTICE STRUCTURE ON THE THERMOELECTRIC FIGURE OF MERIT [J].
BROIDO, DA ;
REINECKE, TL .
PHYSICAL REVIEW B, 1995, 51 (19) :13797-13800
[9]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[10]   Heat transfer in nanostructures for solid-state energy conversion [J].
Chen, G ;
Shakouri, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :242-252