Nanoscale heat transfer and nanostructured thermoelectrics

被引:9
|
作者
Chen, G [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
ITHERM 2004, VOL 1 | 2004年
关键词
nanoscale heat transfer; superlattices; Peltier coolers; heterostructures; thermal conductivity; thermoelectrics;
D O I
10.1109/ITHERM.2004.1319148
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer at nanoscales differs significantly from that in macroscales because of size effects on the phonon and electron transport. Nanoscale heat transfer effects have significant implications for the microelectronic and microphotonic industries, from the thermal management, the device design and reliability, and the active cooling considerations. Past studies have shown that heat conduction in nanostructures can be significantly impeded below that of the predictions of the Fourier theory. Such size effects imply higher device temperatures than anticipated and demands more stringent thermal management measures. On the other hand, similar size effects can be exploited for developing highly efficient thermoelectric materials for direct cooling. This paper starts with a discussion some nanoscale heat transfer effects and their impacts on the device performance, particularly using thermal conductivity reduction in superlattices as an example, followed by a review of recent developments in nanostructured thermoelectric materials.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 50 条
  • [1] Nanoscale heat transfer and nanostructured thermoelectrics
    Chen, Gang
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2006, 29 (02): : 238 - 246
  • [2] Nanostructured thermoelectrics
    Pichanusakorn, Paothep
    Bandaru, Prabhakar
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 67 (2-4): : 19 - 63
  • [3] Molecular dynamics study of the nanoscale boiling heat transfer process on nanostructured surfaces
    Liu, Huaqiang
    Ahmad, Shakeel
    Chen, Jingtan
    Zhao, Jiyun
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 119
  • [4] Nanostructured Interfaces for Thermoelectrics
    Y. Gao
    A. M. Marconnet
    M. A. Panzer
    S. LeBlanc
    S. Dogbe
    Y. Ezzahri
    A. Shakouri
    K. E. Goodson
    Journal of Electronic Materials, 2010, 39 : 1456 - 1462
  • [5] Synthesis of nanostructured thermoelectrics
    Presson, Luke
    Szulczewski, Greg
    Sutch, Tabitha
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Nanostructured Thermoelectrics Preface
    Reith, Heiko
    Nielsch, Kornelius
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (03): : 495 - 496
  • [7] Nanostructured Interfaces for Thermoelectrics
    Gao, Y.
    Marconnet, A. M.
    Panzer, M. A.
    LeBlanc, S.
    Dogbe, S.
    Ezzahri, Y.
    Shakouri, A.
    Goodson, K. E.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1456 - 1462
  • [8] Nanostructured Thermoelectrics: The New Paradigm?
    Kanatzidis, Mercouri G.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 648 - 659
  • [9] Nanostructured and single phase thermoelectrics
    Kanatzidis, Mercouri
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [10] When thermoelectrics reached the nanoscale
    Joseph P. Heremans
    Mildred S. Dresselhaus
    Lon E. Bell
    Donald T. Morelli
    Nature Nanotechnology, 2013, 8 : 471 - 473