A Review on Basic Data-Driven Approaches for Industrial Process Monitoring

被引:1372
作者
Yin, Shen [1 ]
Ding, Steven X. [2 ]
Xie, Xiaochen [3 ]
Luo, Hao [2 ]
机构
[1] Harbin Inst Technol, Res Ctr Intelligent Control & Syst, Harbin 150001, Peoples R China
[2] Univ Duisburg Essen, Inst Automat Control & Complex Syst AKS, D-47057 Duisburg, Germany
[3] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Data-driven; fault diagnosis; industrial operating conditions; process monitoring; FISHER DISCRIMINANT-ANALYSIS; PARTIAL LEAST-SQUARES; FAULT-DIAGNOSIS; IDENTIFICATION; OBSERVER; SYSTEMS; PROJECTION; ROBUST;
D O I
10.1109/TIE.2014.2301773
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, to ensure the reliability and safety of modern large-scale industrial processes, data-driven methods have been receiving considerably increasing attention, particularly for the purpose of process monitoring. However, great challenges are also met under different real operating conditions by using the basic data-driven methods. In this paper, widely applied data-driven methodologies suggested in the literature for process monitoring and fault diagnosis are surveyed from the application point of view. The major task of this paper is to sketch a basic data-driven design framework with necessary modifications under various industrial operating conditions, aiming to offer a reference for industrial process monitoring on large-scale industrial processes.
引用
收藏
页码:6418 / 6428
页数:11
相关论文
共 79 条
[11]  
[Anonymous], P ADCHEM BANFF AB CA
[12]  
[Anonymous], 1994, IFAC P VOLUMES, DOI DOI 10.1016/S1474-6670(17)48000-1
[13]  
[Anonymous], 2000, Pattern Classification
[14]  
[Anonymous], P 18 IFAC WORLD C MI
[15]  
Blanke M., 2006, Diagnosis and fault-tolerant control, DOI [10.1007/978-3-540-35653-0, DOI 10.1007/978-3-540-35653-0]
[16]   An Observer-Based Diagnosis Scheme for Single and Simultaneous Open-Switch Faults in Induction Motor Drives [J].
Campos-Delgado, D. U. ;
Espinoza-Trejo, D. R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (02) :671-679
[17]   Manipulator Fault Diagnosis via Higher Order Sliding-Mode Observers [J].
Capisani, Luca Massimiliano ;
Ferrara, Antonella ;
de Loza, Alejandra Ferreira ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (10) :3979-3986
[18]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[19]   Fault diagnosis based on Fisher discriminant analysis and support vector machines [J].
Chiang, LH ;
Kotanchek, ME ;
Kordon, AK .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1389-1401
[20]   Fault identification for process monitoring using kernel principal component analysis [J].
Cho, JH ;
Lee, JM ;
Choi, SW ;
Lee, D ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :279-288