Chemical deactivation of Fe-BEA as NH3-SCR catalyst-Effect of phosphorous

被引:55
作者
Shwan, Soran [1 ]
Jansson, Jonas [2 ]
Olsson, Louise [1 ]
Skoglundh, Magnus [1 ]
机构
[1] Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden
[2] Volvo Grp Trucks Technol, SE-40508 Gothenburg, Sweden
关键词
Phosphorous; Chemical deactivation; Poisoning; NH3-SCR; Fe-BEA; XPS; V2O5/WO3-TIO2 SCR CATALYSTS; GETTER FUEL ADDITIVES; ZEOLITE CATALYSTS; HYDROTHERMAL STABILITY; DENO(X) CATALYSTS; REACTION-PRODUCTS; LUBRICATION OILS; UREA SOLUTION; PART II; REDUCTION;
D O I
10.1016/j.apcatb.2013.08.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-BEA as catalyst for selective catalytic reduction (SCR) of NOX with NH3 was experimentally studied with focus on chemical deactivation caused by phosphorous exposure. Cordierite supported Fe-BEA samples were exposed to 10 or 50 ppm H3PO4 for 14, 24 and 48 h in a continuous gas flow reactor at 350 degrees C. The catalytic activity of the samples was studied by NH3- and NO-oxidation, NH3 inhibition and NH3-SCR experiments. The phosphorous exposed samples were further characterized by NH3- and NO-TPD, XPS and XRD. The results from the activity studies show that the degree of deactivation due to phosphorous exposure is strongly dependent on the exposure time, while the rate of deactivation is the same for exposure with 10 and 50 ppm H3PO4. The XPS results show that primarily phosphorous pentoxides (P2O5) are formed after short time of phosphorous exposure while longer time of exposure results in formation of metaphosphates (PO3-). The relative amount of metaphosphates after 48 h of H3PO4 exposure was about 45% compared to phosphorous pentoxides. The storage capacity of NO was shown to decrease with increasing relative amount of metaphosphates. The activity studies show that longer time of phosphorous exposure results in significantly decreased activity indicating that the active iron species are very sensitive to phosphorous forming metaphosphates. We suggest that metaphosphates replace the hydroxyl groups on the active iron species in Fe-BEA as the main mechanism for the decreased activity for NH3-SCR in connection with phosphorous exposure. Furthermore, the NH3 inhibition experiments show that the increased amount of strongly bound ammonia due to phosphorous exposure does not contribute to buffer the active iron sites with ammonia during transient SCR conditions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 58 条
[1]  
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[2]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[3]   Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts [J].
Beck, J ;
Brandenstein, J ;
Unterberger, S ;
Hein, KRG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 49 (01) :15-25
[4]   INFLUENCE OF PHOSPHORUS IN VANADIUM-CONTAINING CATALYSTS FOR NOX REMOVAL [J].
BLANCO, J ;
AVILA, P ;
BARTHELEMY, C ;
BAHAMONDE, A ;
ODRIOZOLA, JA ;
DELABANDA, JFG ;
HEINEMANN, H .
APPLIED CATALYSIS, 1989, 55 (01) :151-164
[5]   Effect of Structural and Preparation Parameters on the Activity and Hydrothermal Stability of Metal-Exchanged ZSM-5 in the Selective Catalytic Reduction of NO by NH3 [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Tissler, Arno ;
Althoff, Roderik .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (08) :4308-4319
[6]   Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Casapu, Maria ;
Tissler, Arno ;
Althoff, Roderik .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 101 (3-4) :649-659
[7]   The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3 [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Tissler, Arno ;
Althoff, Roderik .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 95 (3-4) :348-357
[8]   Estimation of the fractions of different nuclear iron species in uniformly metal-exchanged Fe-ZSM-5 samples based on a Poisson distribution [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Tissler, Arno ;
Althoff, Roderik .
APPLIED CATALYSIS A-GENERAL, 2010, 373 (1-2) :168-175
[9]   The role of Bronsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5 [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Wokaun, Alexander ;
Tissler, Arno ;
Althoff, Roderik .
JOURNAL OF CATALYSIS, 2009, 268 (02) :297-306
[10]   The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts [J].
Brandenberger, Sandro ;
Kroecher, Oliver ;
Tissler, Arno ;
Althoff, Roderik .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2008, 50 (04) :492-531