New Interpolation Error Estimates and A Posteriori Error Analysis for Linear Parabolic Interface Problems

被引:12
作者
Sen Gupta, Jhuma [1 ]
Sinha, Rajen Kumar [1 ]
Reddy, G. Murali Mohan [2 ]
Jain, Jinank [3 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
[2] Univ Sao Paulo, Inst Math & Comp Sci, Dept Appl Math & Stat, Sao Carlos, SP, Brazil
[3] Indian Inst Technol Jodhpur, Dept Comp Sci & Engn, Jodhpur 342001, Rajasthan, India
关键词
a posteriori error estimates; Clement-type interpolation estimates; elliptic reconstruction; parabolic interface problems; FINITE-ELEMENT METHODS; ELLIPTIC RECONSTRUCTION; DISCRETIZATIONS; EQUATIONS;
D O I
10.1002/num.22120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive residual-based a posteriori error estimates of finite element method for linear parabolic interface problems in a two-dimensional convex polygonal domain. Both spatially discrete and fully discrete approximations are analyzed. While the space discretization uses finite element spaces that are allowed to change in time, the time discretization is based on the backward Euler approximation. The main ingredients used in deriving a posteriori estimates are new Clement type interpolation estimates and an appropriate adaptation of the elliptic reconstruction technique introduced by (Makridakis and Nochetto, SIAM J Numer Anal 4 (2003), 1585-1594). We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the L-2(H-1(Omega))-norm and almost optimal order in the L-infinity(L-2(Omega))-norm. The interfaces are assumed to be of arbitrary shape but are smooth for our purpose. Numerical results are presented to validate our derived estimators. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:570 / 598
页数:29
相关论文
共 26 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   A POSTERIORI ERROR ESTIMATES FOR THE TWO-STEP BACKWARD DIFFERENTIATION FORMULA METHOD FOR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Chatzipantelidis, Panagiotis .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :109-132
[3]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[4]   A POSTERIORI ERROR CONTROL FOR FULLY DISCRETE CRANK-NICOLSON SCHEMES [J].
Baensch, E. ;
Karakatsani, F. ;
Makridakis, Ch. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :2845-2872
[5]   FITTED AND UNFITTED FINITE-ELEMENT METHODS FOR ELLIPTIC-EQUATIONS WITH SMOOTH INTERFACES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (03) :283-300
[6]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[7]   Robust A posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients [J].
Berrone, Stefano .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (06) :991-1021
[8]   DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: A PRIORI AND A POSTERIORI ERROR ESTIMATIONS [J].
Cai, Zhiqiang ;
Ye, Xiu ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1761-1787
[9]   RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2132-2156
[10]   Finite element methods and their convergence for elliptic and parabolic interface problems [J].
Chen, ZM ;
Zou, J .
NUMERISCHE MATHEMATIK, 1998, 79 (02) :175-202