Biomedical Applications of Graphene and Graphene Oxide

被引:1391
作者
Chung, Chul [1 ]
Kim, Young-Kwan [1 ]
Shin, Dolly [1 ]
Ryoo, Soo-Ryoon [1 ]
Hong, Byung Hee [1 ]
Min, Dal-Hee [1 ]
机构
[1] Seoul Natl Univ, Coll Nat Sci, Dept Chem, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
LASER DESORPTION/IONIZATION; ANTICANCER ACTIVITY; MASS-SPECTROMETRY; SMALL MOLECULES; PLATFORM; FILMS; ASSAY; DELIVERY; TRANSISTOR; DIFFERENTIATION;
D O I
10.1021/ar300159f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several challenging issues remain, initial promising results in these areas point toward significant potential for graphene derivatives in biomedical research.
引用
收藏
页码:2211 / 2224
页数:14
相关论文
共 85 条
[1]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[2]   Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel [J].
Ang, Priscilla Kailian ;
Li, Ang ;
Jaiswal, Manu ;
Wang, Yu ;
Hou, Han Wei ;
Thong, John T. L. ;
Lim, Chwee Teck ;
Loh, Kian Ping .
NANO LETTERS, 2011, 11 (12) :5240-5246
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   A Graphene Oxide-Organic Dye Ionic Complex with DNA-Sensing and Optical-Limiting Properties [J].
Balapanuru, Janardhan ;
Yang, Jia-Xiang ;
Xiao, Si ;
Bao, Qiaoliang ;
Jahan, Maryam ;
Polavarapu, Lakshminarayana ;
Wei, Ji ;
Xu, Qing-Hua ;
Loh, Kian Ping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (37) :6549-6553
[5]   Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery [J].
Bao, Hongqian ;
Pan, Yongzheng ;
Ping, Yuan ;
Sahoo, Nanda Gopal ;
Wu, Tongfei ;
Li, Lin ;
Li, Jun ;
Gan, Leong Huat .
SMALL, 2011, 7 (11) :1569-1578
[6]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[7]   Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection [J].
Chang, Haixin ;
Tang, Longhua ;
Wang, Ying ;
Jiang, Jianhui ;
Li, Jinghong .
ANALYTICAL CHEMISTRY, 2010, 82 (06) :2341-2346
[8]   Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector [J].
Chen, Biao ;
Liu, Min ;
Zhang, Liming ;
Huang, Jie ;
Yao, Jianlin ;
Zhang, Zhijun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7736-7741
[9]   Electronic Detection of Lectins Using Carbohydrate-Functionalized Nanostructures: Graphene versus Carbon Nanotubes [J].
Chen, Yanan ;
Vedala, Harindra ;
Kotchey, Gregg P. ;
Audfray, Aymeric ;
Cecioni, Samy ;
Imberty, Anne ;
Vidal, Sebastien ;
Star, Alexander .
ACS NANO, 2012, 6 (01) :760-770
[10]   Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording [J].
Cohen-Karni, Tzahi ;
Qing, Quan ;
Li, Qiang ;
Fang, Ying ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (03) :1098-1102