Some exact results for the Schrodinger wave equation with a time-dependent potential

被引:24
作者
Campbell, Joel [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
HARMONIC-OSCILLATOR-TYPE; DELTA; HAMILTONIANS; PROPAGATOR; INVARIANTS;
D O I
10.1088/1751-8113/42/36/365212
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The time-dependent Schrodinger equation with a time-dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wavefunction at the origin, one may derive the wavefunction everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the potential lead to the conservation of the normalization of the probability density.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   GREENS-FUNCTION AND PROPAGATOR FOR THE ONE-DIMENSIONAL DELTA-FUNCTION POTENTIAL [J].
BLINDER, SM .
PHYSICAL REVIEW A, 1988, 37 (03) :973-976
[3]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[4]   Propagator for finite range potentials [J].
Cacciari, Ilaria ;
Moretti, Paolo .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
[5]   Propagator for the double delta potential [J].
Cacciari, Ilaria ;
Moretti, Paolo .
PHYSICS LETTERS A, 2006, 359 (05) :396-401
[6]  
CAMPBELL J, 1985, QUANTUM MECH T UNPUB
[7]  
CAMPBELL J, 1991, THESIS U UTAH
[8]   DIFFUSION-LIKE SOLUTIONS OF THE SCHRODINGER-EQUATION FOR A TIME-DEPENDENT POTENTIAL WELL [J].
DEVOTO, A ;
POMORISAC, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (01) :241-249
[9]   QUANTUM PARTICLE IN A BOX WITH MOVING WALLS [J].
DODONOV, VV ;
KLIMOV, AB ;
NIKONOV, DE .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) :3391-3404
[10]   EXACT PROPAGATORS FOR TIME-DEPENDENT COULOMB, DELTA AND OTHER POTENTIALS [J].
DODONOV, VV ;
MANKO, VI ;
NIKONOV, DE .
PHYSICS LETTERS A, 1992, 162 (05) :359-364