Random holonomy for Yang-Mills fields: Long-time asymptotics

被引:4
作者
Bauer, RO [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1023/A:1020529721290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study weak and strong convergence of the stochastic parallel transport for time t --> infinity on Euclidean space. We show that the asymptotic behavior can be controlled by the Yang-Mills action and the Yang-Mills equations. For open paths we show that under appropriate curvature conditions there exits a gauge in which the stochastic parallel transport converges almost surely. For closed paths we show that there exists a gauge invariant notion of a weak limit of the random holonomy and we give conditions that insure the existence of such a limit. Finally, we study the asymptotic behavior of the average of the random holonomy in the case of t'Hooft's 1-instanton.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 21 条
[1]  
ATIYAH MF, 1979, GEOMETRY YANGMILLS F
[2]   Yang-Mills fields and stochastic parallel transport in small geodesic balls [J].
Bauer, RO .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 89 (02) :213-226
[3]   Characterizing Yang-Mills fields by stochastic parallel transport [J].
Bauer, RO .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (02) :536-549
[4]  
BAUER RO, 2001, IN PRESS J FUNCT ANA
[5]  
Bismut J. M., 1984, PROG MATH, V45
[8]  
Elworthy K. D., 1982, LONDON MATH SOC LECT, V70
[9]   Stochastic local Gauss-Bonnet-Chern theorem [J].
Hsu, EP .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (04) :819-834
[10]  
IKEDA N, 1985, P CTR MATH ANAL AUST, V9, P46