Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

被引:38
|
作者
Hwang, Sooyeon [1 ]
Kim, Dong Hyun [1 ]
Chung, Kyung Yoon [1 ]
Chang, Wonyoung [1 ]
机构
[1] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 136791, South Korea
基金
新加坡国家研究基金会;
关键词
X-RAY-DIFFRACTION; STRUCTURAL-CHANGES; LITHIUM BATTERIES;
D O I
10.1063/1.4895336
中图分类号
O59 [应用物理学];
学科分类号
摘要
We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 degrees C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 degrees C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Understanding the role of Co in the Ni-rich cathode materials for Li-ion batteries
    Zhang, Huaxin
    Zhou, Qinghua
    Cao, Fengqin
    Yang, Xiaohong
    He, Huihui
    Li, Huili
    Hu, Wei
    IONICS, 2022, 28 (12) : 5415 - 5419
  • [2] Understanding the role of Co in the Ni-rich cathode materials for Li-ion batteries
    Huaxin Zhang
    Qinghua Zhou
    Fengqin Cao
    Xiaohong Yang
    Huihui He
    Huili Li
    Wei Hu
    Ionics, 2022, 28 : 5415 - 5419
  • [3] Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries
    Teichert, Philipp
    Eshetu, Gebrekidan Gebresilassie
    Jahnke, Hannes
    Figgemeier, Egbert
    BATTERIES-BASEL, 2020, 6 (01):
  • [4] Surface Gradient Ni-Rich Cathode for Li-Ion Batteries
    Chen, Huan
    Yuan, Huihui
    Dai, Zhongqin
    Feng, Sheng
    Zheng, Mengting
    Zheng, Chujun
    Jin, Jun
    Wu, Meifen
    Wu, Xiangwei
    Lu, Jun
    Lu, Yan
    Wen, Zhaoyin
    ADVANCED MATERIALS, 2024, 36 (33)
  • [5] Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries
    Dose, Wesley M.
    Temprano, Israel
    Allen, Jennifer P.
    Bjorklund, Erik
    O'Keefe, Christopher A.
    Li, Weiqun
    Mehdi, B. Layla
    Weatherup, Robert S.
    De Volder, Michael F. L.
    Grey, Clare P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) : 13206 - 13222
  • [6] Ni-rich Cathode Materials for High-performance Li-ion Batteries: Challenges, Progress and Perspectives
    He, Junnan
    Yang, Mei
    Wang, Jiangyan
    Yu, Ranbo
    Wang, Dan
    CHEMNANOMAT, 2023, 9 (07)
  • [7] Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries
    Lu, Shi-jie
    Liu, Yang
    He, Zhen-jiang
    Li, Yun-jiao
    Zheng, Jun-chao
    Mao, Jing
    Dai, Ke-hua
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2021, 31 (04) : 1074 - 1086
  • [8] Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries
    Xu, Chao
    Reeves, Philip J.
    Jacquet, Quentin
    Grey, Clare P.
    ADVANCED ENERGY MATERIALS, 2021, 11 (07)
  • [9] Recent Advances in Enhanced Performance of Ni-Rich Cathode Materials for Li-Ion Batteries: A Review
    Butt, Annam
    Ali, Ghulam
    Kubra, Khadija Tul
    Sharif, Rehana
    Salman, Ayesha
    Bashir, Muzaffar
    Jamil, Sidra
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [10] On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions
    Ronduda, Hubert
    Zybert, Magdalena
    Szczesna-Chrzan, Anna
    Trzeciak, Tomasz
    Ostrowski, Andrzej
    Szymanski, Damian
    Wieczorek, Wladyslaw
    Rarog-Pilecka, Wioletta
    Marcinek, Marek
    NANOMATERIALS, 2020, 10 (10) : 1 - 21