Mechanically-induced grain coarsening in gradient nano-grained copper

被引:125
作者
Chen, W. [1 ]
You, Z. S. [1 ,2 ]
Tao, N. R. [1 ]
Jin, Z. H. [3 ]
Lu, L. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Gradient nano-grained copper; Grain coarsening; Grain boundary migration; Non-diffusional kinetics; Deformation mechanisms; BOUNDARY MOTION; NANOCRYSTALLINE COPPER; PLASTIC-DEFORMATION; RATE SENSITIVITY; SURFACE-LAYER; GROWTH; SHEAR; TEMPERATURE; MIGRATION; METALS;
D O I
10.1016/j.actamat.2016.12.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gradient nano-grained Cu subjected to tensile tests yields at a stress almost twice of that of the conventional coarse-grained Cu at or below the room temperature. Beyond the yield stress, a uniform plastic strain of larger than 30% can be achieved, accompanied by homogeneous grain coarsening in nano-grained surface layer. The observed grain coarsening may induce certain degree of "strain softening". The measured grain coarsening rates strongly depend on temperature, stress and strain rate, suggesting that the grain coarsening is presumably limited by thermally activated dislocation activities at defective grain boundaries, rather than via diffusional process on atom-by-atom basis. A non-diffusional (source limited) Mott-Turnbull rate equation has been proposed to interpret the observed grain coarsening phenomenon. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 71 条
[1]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[2]   THEORIES OF NORMAL GRAIN-GROWTH IN PURE SINGLE-PHASE SYSTEMS [J].
ATKINSON, HV .
ACTA METALLURGICA, 1988, 36 (03) :469-491
[3]   Coupling grain boundary motion to shear deformation [J].
Cahn, John W. ;
Mishin, Yuri ;
Suzuki, Akira .
ACTA MATERIALIA, 2006, 54 (19) :4953-4975
[4]   Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries [J].
Caillard, D. ;
Mompiou, F. ;
Legros, M. .
ACTA MATERIALIA, 2009, 57 (08) :2390-2402
[5]   Annealing Behavior of Nanostructured Aluminum Produced by Cold Rolling to Ultrahigh Strains [J].
Cao, W. Q. ;
Godfrey, A. ;
Hansen, N. ;
Liu, Q. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (01) :204-214
[6]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[7]   Microstructural evolutions and stability of gradient nano-grained copper under tensile tests and subsequent storage [J].
Chen, W. ;
You, Z. S. ;
Tao, N. R. ;
Lu, L. .
36TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, 2015, 89
[8]   Recrystallization and grain growth of cold-drawn gold bonding wire [J].
Cho, JH ;
Cho, JS ;
Moon, JT ;
Lee, J ;
Cho, YH ;
Kim, YW ;
Rollett, AD ;
Oh, KH .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34A (05) :1113-1125
[9]   Grain-size dependence of millimeters to nanometers [J].
Conrad, H .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (09) :2681-2695
[10]   TEM annealing study of normal grain growth in silver thin films [J].
Dannenberg, R ;
Stach, E ;
Groza, JR ;
Dresser, BJ .
THIN SOLID FILMS, 2000, 379 (1-2) :133-138