Quantitative predictions in small-animal X-ray fluorescence tomography

被引:5
作者
Shaker, Kian [1 ]
Larsson, Jakob C. [1 ]
Hertz, Hans M. [1 ]
机构
[1] KTH Royal Inst Technol AlbaNova, Biomed & Xray Phys, Dept Appl Phys, S-10691 Stockholm, Sweden
关键词
NANOPARTICLE-LOADED OBJECTS; COMPUTED-TOMOGRAPHY; MICRO-CT; XFCT; RECONSTRUCTION;
D O I
10.1364/BOE.10.003773
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
X-ray fluorescence (XRF) tomography from nanoparticles (NPs) shows promise for high-spatial-resolution molecular imaging in small-animals Quantitative reconstruction algorithms aim to reconstruct the true distribution of NPs inside the small-animal, but so far there has been no feasible way to predict signal levels or evaluate the accuracy of reconstructions in realistic scenarios. Here we present a GPU-based computational model for small-animal XRF tomography. The unique combination of a highly accelerated Monte Carlo tool combined with an accurate small-animal phantom allows unprecedented realistic full body simulations. We use this model to simulate our experimental system to evaluate the quantitative performance and accuracy of our reconstruction algorithms on large-scale organs as well as mm-sued tumors. Furthermore, we predict the detection limits for sub-mm tumors at realistic NP concentrations. The computational model will be a valuable tool for optimizing next-generation experimental arrangements and reconstruction algorithms. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3773 / 3788
页数:16
相关论文
共 34 条
  • [1] Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT)
    Ahmad, Moiz
    Bazalova-Carter, Magdalena
    Fahrig, Rebecca
    Xing, Lei
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (05) : 1140 - 1147
  • [2] Ahmed MF, 2018, IEEE INT CONF NANO, P250, DOI 10.1109/NANOMED.2018.8641551
  • [3] Monte Carlo Simulation of X-Ray Imaging Using a Graphics Processing Unit
    Badal, Andreu
    Badano, Aldo
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 4081 - 4084
  • [4] In vivo small-animal imaging using micro-CT and digital subtraction angiography
    Badea, C. T.
    Drangova, M.
    Holdsworth, D. W.
    Johnson, G. A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (19) : R319 - R350
  • [5] Investigation of X-ray Fluorescence Computed Tomography (XFCT) and K-Edge Imaging
    Bazalova, Magdalena
    Kuang, Yu
    Pratx, Guillem
    Xing, Lei
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (08) : 1620 - 1627
  • [6] Software for X-ray fluorescence and scattering tomographic reconstruction
    Brunetti, A
    Golosio, B
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (03) : 412 - 425
  • [7] X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays
    Cheong, Seong-Kyun
    Jones, Bernard L.
    Siddiqi, Arsalan K.
    Liu, Fang
    Manohar, Nivedh
    Cho, Sang Hyun
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (03) : 647 - 662
  • [8] Joint reconstruction of x-ray fluorescence and transmission tomography
    Di, Zichao Wendy
    Chen, Si
    Hong, Young Pyo
    Jacobsen, Chris
    Leyffer, Sven
    Wild, Stefan M.
    [J]. OPTICS EXPRESS, 2017, 25 (12): : 13107 - 13124
  • [9] Digimouse: a 3D whole body mouse atlas from CT and cryosection data
    Dogdas, Belma
    Stout, David
    Chatziioannou, Arion F.
    Leahy, Richard M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (03) : 577 - 587
  • [10] Optimization of a table-top x-ray fluorescence computed tomography (XFCT) system
    Dunning, C. A. S.
    Bazalova-Carter, M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (23)