A sine-cosine method for handling nonlinear wave equations

被引:592
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
solitons; KdV equation; generalized KdV equation; K(n; n); equations; Boussinesq equation; RLW equation; Benjamin-Bona-Mahony equation; phi-four equation;
D O I
10.1016/j.mcm.2003.12.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we establish exact solutions for nonlinear wave equations. A sine-cosine method is used for obtaining traveling wave solutions for these models with minimal algebra. The method is applied to selected physical models to illustrate the usage of our main results. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 19 条
[2]  
Adomian G., 1994, SOLVING FRONTIER PRO
[3]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[4]   COMPACTONS - SOLITONS WITH FINITE WAVELENGTH [J].
ROSENAU, P ;
HYMAN, JM .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :564-567
[5]   Compact and noncompact dispersive patterns [J].
Rosenau, P .
PHYSICS LETTERS A, 2000, 275 (03) :193-203
[6]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 32 (06) :1681-+
[7]   Introduction to solitons [J].
Wadati, M .
PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6) :841-847
[8]   MODIFIED KORTEWEG-DEVRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (05) :1289-1296
[9]  
Wazwaz A.M., 2002, Partial differential equations: methods and applications
[10]   Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method [J].
Wazwaz, AM .
CHAOS SOLITONS & FRACTALS, 2001, 12 (08) :1549-1556