Multi-dimensional and multi-signal approaches in scanning transmission electron microscopes

被引:17
作者
Colliex, C. [1 ]
Brun, N. [1 ]
Gloter, A. [1 ]
Imhoff, D. [1 ]
Kociak, M. [1 ]
March, K. [1 ]
Mory, C. [1 ]
Stephan, O. [1 ]
Tence, M. [1 ]
Walls, M. [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 367卷 / 1903期
关键词
aberration-corrected electron microscopy; electron energy-loss spectroscopy; surface plasmons; perovskite interfaces; elemental mapping; LOSS SPECTROSCOPY; RESOLUTION; EELS; INTERFACES; IMAGE;
D O I
10.1098/rsta.2009.0128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developments in instrumentation are essential to open new fields of science. This clearly applies to electron microscopy, where recent progress in all hardware components and in digitally assisted data acquisition and processing has radically extended the domains of application. The demonstrated breakthroughs in electron optics, such as the successful design and practical realization and the use of correctors, filters and monochromators, and the permanent progress in detector efficiency have pushed forward the performance limits, in terms of spatial resolution in imaging, as well as for energy resolution in electron energy-loss spectroscopy (EELS) and for sensitivity to the identification of single atoms. As a consequence, the objects of the nanoworld, of natural or artificial origin, can now be explored at the ultimate atomic level. The improved energy resolution in EELS, which now encompasses the near-IR/visible/UV spectral domain, also broadens the range of available information, thus providing a powerful tool for the development of nanometre-level photonics. Furthermore, spherical aberration correctors offer an enlarged gap in the objective lens to accommodate nanolaboratory-type devices, while maintaining angstrom-level resolution for general characterization of the nano-object under study.
引用
收藏
页码:3845 / 3858
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2006, PROC IMC 16
[2]   Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes -: art. no. 127601 [J].
Arenal, R ;
Stéphan, O ;
Kociak, M ;
Taverna, D ;
Loiseau, A ;
Colliex, C .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)
[3]   Optical gap measurements on individual boron nitride nanotubes by electron energy loss spectroscopy [J].
Arenal, Raul ;
Stephan, Odile ;
Kociak, Mathieu ;
Taverna, Dario ;
Loiseau, Annick ;
Colliex, Christian .
MICROSCOPY AND MICROANALYSIS, 2008, 14 (03) :274-282
[4]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[5]   Two-dimensional mapping of chemical information at atomic resolution [J].
Bosman, M. ;
Keast, V. J. ;
Garcia-Munoz, J. L. ;
D'Alfonso, A. J. ;
Findlay, S. D. ;
Allen, L. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[6]   Microscopy - Elementary resolution [J].
Colliex, Christian .
NATURE, 2007, 450 (7170) :622-623
[7]   The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope [J].
Cosgriff, EC ;
Oxley, MP ;
Allen, LJ ;
Pennycook, SJ .
ULTRAMICROSCOPY, 2005, 102 (04) :317-326
[8]   Probing the photonic local density of states with electron energy loss spectroscopy [J].
de Abajo, F. J. Garcia ;
Kociak, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[9]   Cationic and charge segregation in La2/3Ca1/3MnO3 thin films grown on (001) and (110) SrTiO3 [J].
Estrade, S. ;
Arbiol, J. ;
Peiro, F. ;
Infante, I. C. ;
Sanchez, F. ;
Fontcuberta, J. ;
de la Pena, F. ;
Walls, M. ;
Colliex, C. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[10]   Improving energy resolution of EELS spectra:: an alternative to the monochromator solution [J].
Gloter, A ;
Douiri, A ;
Tencé, M ;
Colliex, C .
ULTRAMICROSCOPY, 2003, 96 (3-4) :385-400