DISCONTINUOUS SOLUTIONS FOR THE GENERALIZED SHORT PULSE EQUATION

被引:12
作者
Coclite, Giuseppe Maria [1 ]
Di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2019年 / 8卷 / 04期
关键词
Existence; uniqueness; stability; entropy solutions; conservation laws; generalized short pulse equation; Cauchy problem; NONHOMOGENEOUS INITIAL-BOUNDARY; CYCLE DISSIPATIVE SOLITONS; OSTROVSKY-HUNTER EQUATION; REGULARIZED SHORT-PULSE; GLOBAL WELL-POSEDNESS; CONVERGENCE; WELLPOSEDNESS; COMPRESSION; PROPAGATION; SCATTERING;
D O I
10.3934/eect.2019036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized short pulse equation is a non-slowly-varying envelope approximation model that describes the physics of few-cycle-pulse optical solitons. This is a nonlinear evolution equation. In this paper, we prove the wellposedness of the Cauchy problem associated with this equation within a class of discontinuous solutions.
引用
收藏
页码:737 / 753
页数:17
相关论文
共 52 条