Materials Knowledge Systems in Python']Python-a Data Science Framework for Accelerated Development of Hierarchical Materials

被引:75
|
作者
Brough, David B. [1 ]
Wheeler, Daniel [2 ]
Kalidindi, Surya R. [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[2] NIST, Div Engn & Mat Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Materials knowledge systems; Hierarchical materials; Multiscale materials; !text type='Python']Python[!/text; Scikit-learn; NumPy; SciPy; Machine learning; LOCALIZATION RELATIONSHIPS; POLYCRYSTALLINE MATERIALS; TEXTURE EVOLUTION; ELASTIC RESPONSE; MICROSTRUCTURE; DEFORMATION; CALIBRATION; COMPUTATION; PREDICTION; ECOSYSTEM;
D O I
10.1007/s40192-017-0089-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data-driven process-structure-property (PSP) linkages provide a systemic, modular, and hierarchical framework for community-driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open-source materials data science framework that can be used to create high-value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning, and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.
引用
收藏
页码:36 / 53
页数:18
相关论文
共 46 条
  • [1] Materials Knowledge Systems in Python—a Data Science Framework for Accelerated Development of Hierarchical Materials
    David B Brough
    Daniel Wheeler
    Surya R. Kalidindi
    Integrating Materials and Manufacturing Innovation, 2017, 6 : 36 - 53
  • [2] MADAS: a Python']Python framework for assessing similarity in materials-science data
    Kuban, Martin
    Rigamonti, Santiago
    Draxl, Claudia
    DIGITAL DISCOVERY, 2024, 3 (12): : 2448 - 2457
  • [3] Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials
    Kalidindi, Surya R.
    INTERNATIONAL MATERIALS REVIEWS, 2015, 60 (03) : 150 - 168
  • [4] A python']python-based approach to sputter deposition simulations in combinatorial materials science
    Thelen, F.
    Zehl, R.
    Buergel, J. L.
    Depla, D.
    Ludwig, A.
    SURFACE & COATINGS TECHNOLOGY, 2025, 503
  • [5] A modular Python']Python framework for rapid development of advanced control algorithms for energy systems
    Eser, Steffen
    Storek, Thomas
    Wuellhorst, Fabian
    Daehling, Stefan
    Gall, Jan
    Stoffel, Phillip
    Mueller, Dirk
    APPLIED ENERGY, 2025, 385
  • [6] DJMol: An open-source modeling platform for computational chemistry and materials science with a Python']Python interpreter
    Prasanna, Krishnamohan G.
    Sunil, Rahul
    Gupta, Kapil
    Lee, Seung-Cheol
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (29) : 2116 - 2129
  • [7] Augmenting Explainable Data-Driven Models in Energy Systems: A Python']Python Framework for Feature Engineering
    Wilfling, Sandra
    MACHINE LEARNING FOR CYBER-PHYSICAL SYSTEMS, ML4CPS 2023, 2024, : 121 - 129
  • [8] MPInterfaces: A Materials Project based Python']Python tool for high-throughput computational screening of interfacial systems
    Mathew, Kiran
    Singh, Arunima K.
    Gabriel, Joshua J.
    Choudhary, Kamal
    Sinnott, Susan B.
    Davydov, Albert V.
    Tavazza, Francesca
    Hennig, Richard G.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 : 183 - 190
  • [9] Role of materials data science and informatics in accelerated materials innovation
    Surya R. Kalidindi
    David B. Brough
    Shengyen Li
    Ahmet Cecen
    Aleksandr L. Blekh
    Faical Yannick P. Congo
    Carelyn Campbell
    MRS Bulletin, 2016, 41 : 596 - 602
  • [10] Role of materials data science and informatics in accelerated materials innovation
    Kalidindi, Surya R.
    Brough, David B.
    Li, Shengyen
    Cecen, Ahmet
    Blekh, Aleksandr L.
    Congo, Faical Yannick P.
    Campbell, Carelyn
    MRS BULLETIN, 2016, 41 (08) : 596 - 602