Weierstrass semigroups on the Giulietti-Korchmaros curve

被引:6
作者
Beelen, Peter [1 ]
Montanucci, Maria [2 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Matemat Torvet 303B, DK-2800 Lyngby, Denmark
[2] Univ Basilicata, Dipartimento Matemat Informat & Econ, Campus Macchia Romana,Viale Ateneo Lucano 10, I-85100 Potenza, Italy
关键词
Giulietti-Korchmaros maximal curve; Weierstrass semigroup; Weierstrass points; MAXIMAL CURVES; FINITE-FIELDS; POINTS; CODES;
D O I
10.1016/j.ffa.2018.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we explicitly determine the structure of the Weierstrass semigroups H(P) for any point P of the Giulietti Korchmaros curve chi. We show that as the point varies, exactly three possibilities arise: one for the F-q2-rational points (already known in the literature), one for the F-q6\F-q2-rational points, and one for all remaining points. As a result, we prove a conjecture concerning the structure of H(P) in case P is an F-q6\F-q2-rational point. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 29
页数:20
相关论文
共 14 条
[1]  
[Anonymous], 1968, 10 EXPOSES COHOMOLOG
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]   Two-Point Coordinate Rings for GK-Curves [J].
Duursma, Iwan M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :593-600
[4]   One-Point AG Codes on the GK Maximal Curves [J].
Fanali, Stefania ;
Giulietti, Massimo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) :202-210
[5]   WEIERSTRASS POINTS ON CERTAIN NONCLASSICAL CURVES [J].
GARCIA, A ;
VIANA, P .
ARCHIV DER MATHEMATIK, 1986, 46 (04) :315-322
[6]   A new family of maximal curves over a finite field [J].
Giulietti, Massimo ;
Korchmaros, Gabor .
MATHEMATISCHE ANNALEN, 2009, 343 (01) :229-245
[7]  
Hirschfeld J.W.P., 2008, PRINCETON SERIES APP
[8]  
Hoholdt T, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P871
[9]   The minimum distance of codes in an array coming from telescopic semigroups [J].
Kirfel, C ;
Pellikaan, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1720-1732
[10]  
LACHAUD G, 1987, CR ACAD SCI I-MATH, V305, P729