The Threshold of a Stochastic SIRS Model with Vertical Transmission and Saturated Incidence

被引:1
作者
Zhu, Chunjuan [1 ]
Zeng, Guangzhao [1 ]
Sun, Yufeng [1 ]
机构
[1] Shaoguan Univ, Sch Math & Stat, Shaoguan 512005, Peoples R China
关键词
EPIDEMIC MODEL; GLOBAL STABILITY; POPULATION; DYNAMICS; BEHAVIOR;
D O I
10.1155/2017/5620301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The threshold of a stochastic SIRS model with vertical transmission and saturated incidence is investigated. If the noise is small, it is shown that the threshold of the stochastic system determines the extinction and persistence of the epidemic. In addition, we find that if the noise is large, the epidemic still prevails. Finally, numerical simulations are given to illustrate the results.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Bifurcation analysis of an SIRS epidemic model with generalized incidence [J].
Alexander, ME ;
Moghadas, SM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1794-1816
[2]  
Allen LJS, 2005, INT J NUMER ANAL MOD, V2, P329
[3]   Stochastic epidemic models with a backward bifurcation [J].
Allen, Linda J. S. ;
van den Driessche, P. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (03) :445-458
[4]   Ratio-dependent predator-prey model: effect of environmental fluctuation and stability [J].
Bandyopadhyay, M ;
Chattopadhyay, J .
NONLINEARITY, 2005, 18 (02) :913-936
[5]   THE INTRINSIC TRANSMISSION DYNAMICS OF TUBERCULOSIS EPIDEMICS [J].
BLOWER, SM ;
MCLEAN, AR ;
PORCO, TC ;
SMALL, PM ;
HOPEWELL, PC ;
SANCHEZ, MA ;
MOSS, AR .
NATURE MEDICINE, 1995, 1 (08) :815-821
[6]   Global stability of a stage-structured epidemic model with a nonlinear incidence [J].
Cai, Li-Ming ;
Li, Xue-Zhi ;
Ghosh, Mini .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :73-82
[7]   STABILITY OF STOCHASTIC DELAYED SIR MODEL [J].
Chen, Guoting ;
Li, Tiecheng .
STOCHASTICS AND DYNAMICS, 2009, 9 (02) :231-252
[8]   Global stability of an SEIS epidemic model with recruitment and a varying total population size [J].
Fan, M ;
Li, MY ;
Wang, K .
MATHEMATICAL BIOSCIENCES, 2001, 170 (02) :199-208
[9]   An SIS patch model with variable transmission coefficients [J].
Gao, Daozhou ;
Ruan, Shigui .
MATHEMATICAL BIOSCIENCES, 2011, 232 (02) :110-115
[10]   The SIS epidemic model with Markovian switching [J].
Gray, Alison ;
Greenhalgh, David ;
Mao, Xuerong ;
Pan, Jiafeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :496-516