THE GENERICITY OF ARNOLD DIFFUSION IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

被引:8
作者
Cheng, Chong-Qing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Dynamical instability; Arnold diffusion; CONNECTING ORBITS; INSTABILITY; RESONANCES; CYLINDERS; DYNAMICS;
D O I
10.4310/AJM.2019.v23.n3.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the net of transition chain is delta-dense for nearly integrable positive definite Hamiltonian systems with 3 degrees of freedom in the cusp-residual generic sense in C-r-topology, r >= 6. The main ingredients of the proof existed in [CZ, C17a, C17b]. As an immediate consequence, Arnold diffusion exists among this class of Hamiltonian systems. The question of [C17c] is answered in Section 9 of the paper.
引用
收藏
页码:401 / 438
页数:38
相关论文
共 44 条
[1]  
Arnold V.I., 1966, P INT C MATH MOSC, P387
[2]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[3]   Connecting orbits of time dependent Lagrangian systems [J].
Bernard, P .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) :1533-+
[4]   The dynamics of pseudographs in convex Hamiltonian systems [J].
Bernard, Patrick .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :615-669
[5]   Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders [J].
Bernard, Patrick ;
Kaloshin, Vadim ;
Zhang, Ke .
ACTA MATHEMATICA, 2016, 217 (01) :1-79
[6]   Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems [J].
Bernard, Patrick .
ANNALES HENRI POINCARE, 2010, 11 (05) :929-942
[7]   An approach to Arnold's diffusion through the calculus of variations [J].
Bessi, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (06) :1115-1135
[8]   Upper bounds on Arnold diffusion times via Mather theory [J].
Bessi, U ;
Chierchia, L ;
Valdinoci, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (01) :105-129
[9]   Generalized characteristics and Lax-Oleinik operators: global theory [J].
Cannarsa, Piermarco ;
Cheng, Wei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
[10]  
CHENG C.-Q., 2013, ARXIV12074016V2