Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors

被引:34
作者
Jeong, Yesul [1 ,2 ]
Pearson, Christopher [1 ,2 ]
Kim, Hyun-Gwan [3 ]
Park, Man-Young [3 ]
Kim, Hongdoo [4 ]
Do, Lee-Mi [5 ]
Petty, Michael C. [1 ,2 ]
机构
[1] Univ Durham, Sch Engn & Comp Sci, S Rd, Durham DH1 3LE, England
[2] Univ Durham, Ctr Mol & Nanoscale Elect, S Rd, Durham DH1 3LE, England
[3] DNF Co Ltd, Res Ctr Nanomat, Daejeon 306802, South Korea
[4] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, Yongin 446701, South Korea
[5] Elect & Telecommun Res Inst, IT Convergence Technol Res Lab, Daejeon 305700, South Korea
关键词
solution process; low temperature; solution processed silicon dioxide; zinc oxide; zinc oxide field-effect transistor; oxygen plasma; LOW-TEMPERATURE; OXYGEN PLASMA; PERFORMANCE; POLYSILAZANE; DIELECTRICS; SILICA; LAYER; COATINGS; ROUTE; XPS;
D O I
10.1021/acsami.5b10520
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the optimization of the plasma treatment conditions for a solution -processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of similar to 10(-)7 A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of similar to 10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre -annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 degrees C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of similar to 10(7).
引用
收藏
页码:2061 / 2070
页数:10
相关论文
共 47 条
[1]   STRUCTURAL INVESTIGATION OF SILICA-GEL FILMS BY INFRARED-SPECTROSCOPY [J].
ALMEIDA, RM ;
PANTANO, CG .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (08) :4225-4232
[2]   Preparation of moisture curable polysilazane coatings Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy [J].
Bauer, F ;
Decker, U ;
Dierdorf, A ;
Ernst, H ;
Heller, R ;
Liebe, H ;
Mehnert, R .
PROGRESS IN ORGANIC COATINGS, 2005, 53 (03) :183-190
[3]   Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications [J].
Chang, Wen-Yuan ;
Lai, Yen-Chao ;
Wu, Tai-Bor ;
Wang, Sea-Fue ;
Chen, Frederick ;
Tsai, Ming-Jinn .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[4]   Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors [J].
Chen, Fa-Hsyang ;
Her, Jim-Long ;
Shao, Yu-Hsuan ;
Matsuda, Yasuhiro H. ;
Pan, Tung-Ming .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-5
[5]   ALD-Grown ZnO Thin-Film Transistor with a Polymeric Dielectric [J].
Choi, Woon-Seop .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (02) :678-681
[6]   A comparison of the performance and stability of ZnO-TFTs with silicon dioxide and nitride as gate insulators [J].
Cross, R. B. M. ;
De Souza, Maria Merlyne ;
Deane, Steve C. ;
Young, Nigel D. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (05) :1109-1115
[7]   Transparent thin-film transistors with zinc indium oxide channel layer [J].
Dehuff, NL ;
Kettenring, ES ;
Hong, D ;
Chiang, HQ ;
Wager, JF ;
Hoffman, RL ;
Park, CH ;
Keszler, DA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[8]  
Greve D. W., 1998, FIELD EFFECT DEVICES, P87
[9]  
Gupta T, 2009, COPPER INTERCONNECT TECHNOLOGY, P1, DOI 10.1007/978-1-4419-0076-0
[10]  
HAMANN C, 1988, ELECT CONDUCTION MEC, P177