Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium

被引:144
作者
Fuerst, RA
Baboiu, DM
Lawrence, B
Torruellas, WE
Stegeman, GI
Trillo, S
Wabnitz, S
机构
[1] UNIV CENT FLORIDA,DEPT PHYS,ORLANDO,FL 32826
[2] FDN UGO BORDONI,I-00142 ROME,ITALY
[3] WASHINGTON STATE UNIV,DEPT PHYS,PULLMAN,WA 99164
[4] UNIV BOURGOGNE,PHYS LAB,F-21004 DIJON,FRANCE
关键词
D O I
10.1103/PhysRevLett.78.2756
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel type of spatial modulational instability induced by the dynamical interaction of two strongly coupled fundamental and harmonic fields in a second-order nonlinear optical material is demonstrated experimentally. This phenomenon is explained theoretically on the basis of a one-dimensional Floquet theory. At high intensities, the formation of a 1D solitary wave lattice is superseded by the onset of 2D modulational instabilities.
引用
收藏
页码:2756 / 2759
页数:4
相关论文
共 29 条
[1]  
ABLOWITZ MJ, 1989, PHYS REV LETT, V62, P2065
[2]  
AKHMANOV SA, 1972, LASER HDB, P1151
[3]   MODULATION INSTABILITY OF THE GROUND-STATE OF THE NONLINEAR-WAVE EQUATION - OPTICAL MACHINE GUN [J].
AKHMEDIEV, NN ;
KORNEEV, VI ;
NABIEV, RF .
OPTICS LETTERS, 1992, 17 (06) :393-395
[4]   PSEUDORECURRENCE IN 2-DIMENSIONAL MODULATION INSTABILITY WITH A SATURABLE SELF-FOCUSING NONLINEARITY [J].
AKHMEDIEV, NN ;
HEATLEY, DR ;
STEGEMAN, GI ;
WRIGHT, EM .
PHYSICAL REVIEW LETTERS, 1990, 65 (12) :1423-1426
[5]  
[Anonymous], 1991, J FLUID MECH
[6]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[7]   TWIN-HOLE DARK SOLITONS [J].
BURYAK, AV ;
KIVSHAR, YS .
PHYSICAL REVIEW A, 1995, 51 (01) :R41-R44
[8]   SPATIAL OPTICAL SOLITONS GOVERNED BY QUADRATIC NONLINEARITY [J].
BURYAK, AV ;
KIVSHAR, YS .
OPTICS LETTERS, 1994, 19 (20) :1612-1614
[9]   GENERATION OF A TRAIN OF FUNDAMENTAL SOLITONS AT A HIGH REPETITION RATE IN OPTICAL FIBERS [J].
DIANOV, EM ;
MAMYSHEV, PV ;
PROKHOROV, AM ;
CHERNIKOV, SV .
OPTICS LETTERS, 1989, 14 (18) :1008-1010
[10]  
EARL A., 1955, THEORY ORDINARY DIFF