A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds

被引:34
作者
Bento, Glaydston de Carvalho [1 ]
da Cruz Neto, Joao Xavier [2 ]
Oliveira, Paulo Roberto [3 ]
机构
[1] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Piaui, DM, BR-64049550 Teresina, PI, Brazil
[3] Univ Fed Rio de Janeiro, COPPE Sistemas, BR-21945970 Rio De Janeiro, RJ, Brazil
关键词
Proximal method; Non-convex optimization; Kurdyka-Lojasiewicz inequality; Riemannian manifolds; MONOTONE VECTOR-FIELDS; O-MINIMAL STRUCTURES; HADAMARD MANIFOLDS; ALTERNATING MINIMIZATION; LOJASIEWICZ INEQUALITY; NONCONVEX PROBLEMS; CONVEX-FUNCTIONS; QUASI-CONVEX; ALGORITHM; OPTIMIZATION;
D O I
10.1007/s10957-015-0861-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point method, in the case that the objective function satisfies the Kurdyka-Lojasiewicz inequality. In our approach, we extend the applicability of the proximal point method to be able to solve any problem that can be formulated as the minimizing of a definable function, such as one that is analytic, restricted to a compact manifold, on which the sign of the sectional curvature is not necessarily constant.
引用
收藏
页码:743 / 755
页数:13
相关论文
共 42 条
[1]  
Absil P.-A., 2010, RECENT ADV OPTIMIZAT, P125
[2]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[3]   On the convergence of the proximal algorithm for nonsmooth functions involving analytic features [J].
Attouch, Hedy ;
Bolte, Jerome .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :5-16
[4]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[5]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[6]   A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds [J].
Bento, G. C. ;
Cruz Neto, J. X. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) :125-137
[7]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[8]   Subgradient Method for Convex Feasibility on Riemannian Manifolds [J].
Bento, Glaydston C. ;
Melo, Jefferson G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :773-785
[9]   THE LOJASIEWICZ INEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO SUBGRADIENT DYNAMICAL SYSTEMS [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian .
SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) :1205-1223
[10]   Clarke subgradients of stratifiable functions [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian ;
Shiota, Masahiro .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :556-572