A Robust Fuzzy c-Means Clustering Algorithm for Incomplete Data

被引:6
|
作者
Li, Jinhua [1 ]
Song, Shiji [1 ]
Zhang, Yuli [1 ,2 ]
Li, Kang [3 ]
机构
[1] Tsinghua Univ, TNList, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[3] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North Ireland
来源
INTELLIGENT COMPUTING, NETWORKED CONTROL, AND THEIR ENGINEERING APPLICATIONS, PT II | 2017年 / 762卷
基金
中国国家自然科学基金;
关键词
Robust FCM; Interval data; Robust clustering algorithm;
D O I
10.1007/978-981-10-6373-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Date sets with missing feature values are prevalent in clustering analysis. Most existing clustering methods for incomplete data rely on imputations of missing feature values. However, accurate imputations are usually hard to obtain especially for small-size or highly corrupted data sets. To address this issue, this paper proposes a robust fuzzy c-means (RFCM) clustering algorithm, which does not require imputations. The proposed RFCM represents the missing feature values by intervals, which can be easily constructed using the K-nearest neighbors method, and adopts a min-max optimization model to reduce the impact of noises on clustering performance. We give an equivalent tractable reformulation of the min-max optimization problem and propose an efficient solution method based on smoothing and gradient projection techniques. Experiments on UCI data sets validate the effectiveness of the proposed RFCM algorithm by comparison with existing clustering methods for incomplete data.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [1] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [2] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [3] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377
  • [4] A Weighted Fuzzy c-Means Clustering Algorithm for Incomplete Big Sensor Data
    Li, Peng
    Chen, Zhikui
    Hu, Yueming
    Leng, Yonglin
    Li, Qiucen
    WIRELESS SENSOR NETWORKS (CWSN 2017), 2018, 812 : 55 - 63
  • [5] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [6] Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm
    Dao-Qiang Zhang
    Song-Can Chen
    Neural Processing Letters, 2003, 18 : 155 - 162
  • [7] Clustering incomplete data using kernel-based fuzzy C-means algorithm
    Zhang, DQ
    Chen, SC
    NEURAL PROCESSING LETTERS, 2003, 18 (03) : 155 - 162
  • [8] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [9] A Robust Fuzzy Local Information C-Means Clustering Algorithm
    Krinidis, Stelios
    Chatzis, Vassilios
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (05) : 1328 - 1337
  • [10] A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data
    Li, Dan
    Gu, Hong
    Zhang, Liyong
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (10) : 6942 - 6947