Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models

被引:22
作者
Demopoulos, Amanda W. J. [1 ]
McClain-Counts, Jennifer P. [1 ]
Bourque, Jill R. [1 ]
Prouty, Nancy G. [2 ]
Smith, Brian J. [3 ]
Brooke, Sandra [4 ]
Ross, Steve W. [5 ]
Ruppel, Carolyn D. [6 ]
机构
[1] US Geol Survey Wetland & Aquat Res Ctr, Gainesville, FL 32653 USA
[2] US Geol Survey Pacific Coastal & Marine Sci Ctr, Santa Cruz, CA USA
[3] Contracted US Geol Survey, Cherokee Nat Technol, Davie, FL USA
[4] Florida State Univ, Tallahassee, FL 32306 USA
[5] Univ North Carolina Wilmington, Wilmington, NC USA
[6] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, Woods Hole, MA USA
关键词
Stable isotopes; MixSIAR; Bathymodiolus childressi; Methane seeps; Chemosynthesis; Mixotrophy; Trophic ecology; DEEP-SEA MUSSEL; COLD-SEEP; SULFUR ISOTOPES; METHANE; CARBON; GULF; FRACTIONATION; COMMUNITIES; MACROBENTHOS; INDICATORS;
D O I
10.1016/j.dsr.2019.04.002
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Chemosynthetic environments support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. Hundreds of methane seeps have been documented along the U.S. Atlantic margin (USAM), and detailed investigations at a few seeps have revealed distinct environments containing mussels, microbial mats, authigenic carbonates, and soft sediments. The dominant mussel, Bathymodiolus childressi, contains methanotrophic endosymbionts but is also capable of filter feeding, and stable isotope analysis (SIA) of mussel-shell periostracum suggests that these mussels are mixotrophic, assimilating multiple food resources. However, it is unknown whether mixotrophy is widespread or varies spatially and temporally. We used SIA (delta C-13, delta N-15, and delta S-34) and an isotope mixing model (MixSIAR) to estimate resource contribution to B. childressi and characterize food webs at two seep sites (Baltimore Seep; 400 m and Norfolk Seep; 1500 m depths) along the USAM, and applied a linear mixed-effects model to explore the role of mussel population density and tissue type in influencing SIA variance. After controlling for location and temporal variation, isotopic variability was a function of proportion of live mussels present and tissue type. Isotopic differences were also spatially discrete, possibly reflecting variations in the underlying carbon source at the two sites. Low mussel delta C-13 values (similar to - 63 parts per thousand) are consistent with a dependence on microbial methane. However, MixSIAR results revealed mixotrophy for mussels at both sites, implying a reliance on a mixture of methane and phytoplankton-derived particulate organic material. The mixing model results also reveal population density-driven patterns, suggesting that resource use is a function of live mussel abundance. Mussel isotopes differed by tissue type, with gill having the lowest delta N-15 values relative to muscle and mantle tissues. Based on mass balance equations, up to 79% of the dissolved inorganic carbon (DIC) of the pore fluids within the anaerobic oxidation of the methane zone is derived from methane and available to fuel upper slope deep-sea communities, such as fishes (Dysornmina rugosa and Symptoms nebulosus), echinoderms (Odontaster robustus, Echinus wallisi, and Gracilechinus affinis), and shrimp, (Alvinocaris markensis). The presence of these seeps thereby increases the overall trophic and community diversity of the USAM continental slope. Given the presence of hundreds of seeps within the region, primary production at seeps may serve as an important, yet unquantified, energy source to the USAM deep-sea environment.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 77 条
[1]  
[Anonymous], 2017, EXPLORATION RES MID
[2]   A specific and widespread association between deep-sea Bathymodiolus mussels and a novel family of Epsilonproteobacteria [J].
Assie, Adrien ;
Borowski, Christian ;
van der Heijden, Karina ;
Raggi, Luciana ;
Geier, Benedikt ;
Leisch, Nikolaus ;
Schimak, Mario P. ;
Dubilier, Nicole ;
Petersen, Jillian M. .
ENVIRONMENTAL MICROBIOLOGY REPORTS, 2016, 8 (05) :805-813
[3]   The importance of quantifying inherent variability when interpreting stable isotope field data [J].
Barnes, Carolyn ;
Jennings, Simon ;
Polunin, Nicholas V. C. ;
Lancaster, John E. .
OECOLOGIA, 2008, 155 (02) :227-235
[4]   Spatial patterns of tissue stable isotope contents give insight into the nutritional sources for seep communities on the Gulf of Mexico lower slope [J].
Becker, Erin L. ;
Cordes, Erik E. ;
Macko, Stephen A. ;
Lee, Raymond W. ;
Fisher, Charles R. .
MARINE ECOLOGY PROGRESS SERIES, 2014, 498 :133-U481
[5]   Stable carbon and nitrogen isotope compositions of hydrocarbon-seep bivalves on the Gulf of Mexico lower continental slope [J].
Becker, Erin L. ;
Lee, Raymond W. ;
Macko, Stephen A. ;
Faure, Baptiste M. ;
Fisher, Charles R. .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2010, 57 (21-23) :1957-1964
[6]  
Bourque J. R., 2017, DEEP SEA RES 2, V137
[7]   DEEP-SEA HYDROCARBON SEEP COMMUNITIES - EVIDENCE FOR ENERGY AND NUTRITIONAL CARBON-SOURCES [J].
BROOKS, JM ;
KENNICUTT, MC ;
FISHER, CR ;
MACKO, SA ;
COLE, K ;
CHILDRESS, JJ ;
BIDIGARE, RR ;
VETTER, RD .
SCIENCE, 1987, 238 (4830) :1138-1142
[8]   Biogeochemistry of sulfur isotopes [J].
Canfield, DE .
STABLE ISOTOPE GEOCHEMISTRY, 2001, 43 :607-636
[9]   SYMBIOSIS OF METHYLOTROPHIC BACTERIA AND DEEP-SEA MUSSELS [J].
CAVANAUGH, CM ;
LEVERING, PR ;
MAKI, JS ;
MITCHELL, R ;
LIDSTROM, ME .
NATURE, 1987, 325 (6102) :346-348
[10]   MICROBIOLOGICAL FRACTIONATION OF STABLE SULFUR ISOTOPES - REVIEW AND CRITIQUE [J].
CHAMBERS, LA ;
TRUDINGER, PA .
GEOMICROBIOLOGY JOURNAL, 1979, 1 (03) :249-293