Statistical properties of determinantal point processes in high-dimensional Euclidean spaces

被引:55
作者
Scardicchio, Antonello [1 ,2 ]
Zachary, Chase E.
Torquato, Salvatore [2 ,3 ,4 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Program Appl & Computat Math, Princeton Inst Sci & Technol, Princeton, NJ 08544 USA
[4] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
基金
美国国家科学基金会;
关键词
eigenvalues and eigenfunctions; fermion systems; matrix algebra; quantum statistical mechanics; NEIGHBOR DISTRIBUTION-FUNCTIONS; REALIZABILITY; EIGENVALUES; DENSITY;
D O I
10.1103/PhysRevE.79.041108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of NxN matrices and then extrapolate to N ->infinity. This formulation allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces of dimension d. We also implement an algorithm due to Hough for generating configurations of determinantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere point process for d=1-4. This homogeneous, isotropic determinantal point process, discussed also in a companion paper [S. Torquato, A. Scardicchio, and C. E. Zachary, J. Stat. Mech.: Theory Exp. (2008) P11019.], is the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix from the circular unitary ensemble. In addition to the nearest-neighbor probability distribution, we are able to calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process, and we discuss these properties as the dimension d is varied. The results in this paper accompany and complement analytical properties of higher-dimensional determinantal point processes developed in a prior paper.
引用
收藏
页数:19
相关论文
共 39 条
[1]  
[Anonymous], 2005, Advanced Quantum Mechanics
[2]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[3]   FERMI HOLE IN ATOMS [J].
BOYD, RJ ;
COULSON, CA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (14) :1805-1816
[4]   UNIVERSALITY OF THE CORRELATIONS BETWEEN EIGENVALUES OF LARGE RANDOM MATRICES [J].
BREZIN, E ;
ZEE, A .
NUCLEAR PHYSICS B, 1993, 402 (03) :613-627
[5]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[6]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[7]   Unexpected density fluctuations in jammed disordered sphere packings [J].
Donev, A ;
Stillinger, FH ;
Torquato, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[8]   Exact results for two-dimensional Coulomb systems [J].
Forrester, PJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :235-270
[9]   Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles [J].
Forrester, PJ ;
Witte, NS .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (03) :195-200
[10]   Voronoi and void statistics for superhomogeneous point processes [J].
Gabrielli, Andrea ;
Torquato, Salvatore .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 1) :041105-1