Cluster Based Secure Multi-party Computation in Federated Learning for Histopathology Images

被引:9
|
作者
Hosseini, Seyedeh Maryam [1 ]
Sikaroudi, Milad [1 ]
Babaei, Morteza [1 ,2 ]
Tizhoosh, Hamid R. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Kimia Lab, Waterloo, ON N2L 3G1, Canada
[2] MaRS Ctr, Vector Inst, Toronto, ON, Canada
[3] Mayo Clin, Dept Artificial Intelligence & Informat, Rochester, MN USA
来源
DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022 | 2022年 / 13573卷
关键词
Federated learning; Decentralized learning; Secure multiparty computation; Privacy preservation; Histopathology imaging;
D O I
10.1007/978-3-031-18523-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a decentralized method enabling hospitals to collaboratively learn a model without sharing private patient data for training. In FL, participant hospitals periodically exchange training results rather than training samples with a central server. However, having access to model parameters or gradients can expose private training data samples. To address this challenge, we adopt secure multiparty computation (SMC) to establish a privacy-preserving federated learning framework. In our proposed method, the hospitals are divided into clusters. After local training, each hospital splits its model weights among other hospitals in the same cluster such that no single hospital can retrieve other hospitals' weights on its own. Then, all hospitals sum up the received weights, sending the results to the central server. Finally, the central server aggregates the results, retrieving the average of models' weights and updating the model without having access to individual hospitals' weights. We conduct experiments on a publicly available repository, The Cancer Genome Atlas (TCGA). We compare the performance of the proposed framework with differential privacy and federated averaging as the baseline. The results reveal that compared to differential privacy, our framework can achieve higher accuracy with no privacy leakage risk at a cost of higher communication overhead.
引用
收藏
页码:110 / 118
页数:9
相关论文
共 50 条
  • [1] Secure Multi-Party Computation Framework in Decentralized Federated Learning for Histopathology Images
    Hosseini, Seyedeh Maryam
    Babaie, Morteza
    Tizhoosh, Hamid
    LABORATORY INVESTIGATION, 2023, 103 (03) : S1293 - S1294
  • [2] Secure Byzantine resilient federated learning based on multi-party computation
    Gao, Hongfeng
    Huang, Hao
    Tian, Youliang
    Tongxin Xuebao/Journal on Communications, 2025, 46 (02): : 108 - 122
  • [3] A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation
    Mou, Wenhao
    Fu, Chunlei
    Lei, Yan
    Hu, Chunqiang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 198 - 209
  • [4] MPCFL: Towards Multi-party Computation for Secure Federated Learning Aggregation
    Kaminaga, Hiroki
    Awaysheh, Feras M.
    Alawadi, Sadi
    Kamm, Liina
    16TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC 2023, 2023,
  • [5] Secure Federated Learning for Multi-Party Network Monitoring
    Lytvyn, Oleksandr
    Nguyen, Giang
    IEEE ACCESS, 2024, 12 : 163262 - 163284
  • [6] Secure and efficient federated learning via novel multi-party computation and compressed sensing
    Chen, Lvjun
    Xiao, Di
    Yu, Zhuyang
    Zhang, Maolan
    INFORMATION SCIENCES, 2024, 667
  • [7] Partially Encrypted Multi-Party Computation for Federated Learning
    Sotthiwat, Ekanut
    Zhen, Liangli
    Li, Zengxiang
    Zhang, Chi
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 828 - 835
  • [8] A Privacy-Preserving Federated Learning Framework for IoT Environment Based on Secure Multi-party Computation
    Geng, Tieming
    Liu, Jian
    Huang, Chin-Tser
    2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 117 - 122
  • [9] Secure Multi-Party Computation
    Bayatbabolghani, Fattaneh
    Blanton, Marina
    PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 2157 - 2159
  • [10] Secure Multi-Party Computation for Machine Learning: A Survey
    Zhou, Ian
    Tofigh, Farzad
    Piccardi, Massimo
    Abolhasan, Mehran
    Franklin, Daniel
    Lipman, Justin
    IEEE ACCESS, 2024, 12 : 53881 - 53899