Automated Parameter Selection for Total Variation Minimization in Image Restoration

被引:35
作者
Langer, Andreas [1 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Locally dependent regularization parameter; Automated parameter selection; Discrepancy principle; Constrained/unconstrained problem; Gaussian noise; Impulse noise; CONSTRAINED TOTAL-VARIATION; LINEAR INVERSE PROBLEMS; PRIMAL-DUAL METHOD; REGULARIZATION PARAMETER; DOMAIN DECOMPOSITION; DATA-FIDELITY; L-CURVE; ALGORITHM; RECONSTRUCTION; NONSMOOTH;
D O I
10.1007/s10851-016-0676-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Algorithms for automatically selecting a scalar or locally varying regularization parameter for total variation models with an -data fidelity term, , are presented. The automated selection of the regularization parameter is based on the discrepancy principle, whereby in each iteration a total variation model has to be minimized. In the case of a locally varying parameter, this amounts to solve a multiscale total variation minimization problem. For solving the constituted multiscale total variation model, convergent first- and second-order methods are introduced and analyzed. Numerical experiments for image denoising and image deblurring show the efficiency, the competitiveness, and the performance of the proposed fully automated scalar and locally varying parameter selection algorithms.
引用
收藏
页码:239 / 268
页数:30
相关论文
共 93 条
[1]   A property of the minimum vectors of a regularizing functional defined by means of the absolute norm [J].
Alliney, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (04) :913-917
[2]   A TV based restoration model with local constraints [J].
Almansa, A. ;
Ballester, C. ;
Caselles, V. ;
Haro, G. .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 34 (03) :209-236
[3]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[4]  
[Anonymous], 1996, REGULARIZATION INVER
[5]  
[Anonymous], 1989, CAMBRIDGE TEXTS APPL
[6]   A variational approach to removing multiplicative noise [J].
Aubert, Gilles ;
Aujol, Jean-Francois .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :925-946
[7]   Structure-texture image decomposition - Modeling, algorithms, and parameter selection [J].
Aujol, JF ;
Gilboa, G ;
Chan, T ;
Osher, S .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 67 (01) :111-136
[8]   Parameter estimation in TV image restoration using variational distribution approximation [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (03) :326-339
[9]  
Bartels S., 2015, NUMERICAL METHODS NO, V14
[10]   TV based image restoration with local constraints [J].
Bertalmio, M ;
Caselles, V ;
Rougé, B ;
Solé, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :95-122