Performance of Coupled-Cluster Singles and Doubles on Modern Stream Processing Architectures

被引:23
作者
Fales, B. Scott [1 ,2 ,3 ]
Curtis, Ethan R. [1 ,2 ,3 ]
Johnson, K. Grace [1 ,2 ,3 ]
Lahana, Dean [1 ,2 ,3 ]
Seritan, Stefan [1 ,2 ,3 ]
Wang, Yuanheng [1 ,2 ,3 ]
Weir, Hayley [1 ,2 ,3 ]
Martinez, Todd J. [1 ,2 ,3 ]
Hohenstein, Edward G. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
BODY PERTURBATION-THEORY; ELECTRON CORRELATION; QUANTUM-CHEMISTRY; PARALLEL IMPLEMENTATION; APPROXIMATE INTEGRALS; NATURAL ORBITALS; EFFICIENT; CCSD; ALGORITHM; ENERGY;
D O I
10.1021/acs.jctc.0c00336
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a new implementation of coupled-cluster singles and doubles (CCSD) optimized for the most recent graphical processing unit (GPU) hardware. We find that a single node with 8 NVIDIA V100 GPUs is capable of performing CCSD computations on roughly 100 atoms and 1300 basis functions in less than 1 day. Comparisons against massively parallel implementations of CCSD suggest that more than 64 CPU-based nodes (each with 16 cores) are required to match this performance.
引用
收藏
页码:4021 / 4028
页数:8
相关论文
共 78 条
[1]  
Advanced Micro Devices Inc, OPENCL PROGRAMMING G
[2]  
Amazon Web Services Inc, AM EC2 PRIC
[3]   Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures [J].
Anisimov, Victor M. ;
Bauer, Gregory H. ;
Chadalavada, Kalyana ;
Olson, Ryan M. ;
Glenski, Joseph W. ;
Krarner, William T. C. ;
Apra, Edoardo ;
Kowalski, Karol .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (10) :4307-4316
[4]  
[Anonymous], 1969, Advances in Chemical Physics
[5]  
[Anonymous], 2014, CUDA c programming guide
[6]   Fast and Flexible Coupled Cluster Implementation [J].
Asadchev, Andrey ;
Gordon, Mark S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3385-3392
[7]   Automatic code generation for many-body electronic structure methods: the tensor contraction engine [J].
Auer, AA ;
Baumgartner, G ;
Bernholdt, DE ;
Bibireata, A ;
Choppella, V ;
Cociorva, D ;
Gao, XY ;
Harrison, R ;
Krishnamoorthy, S ;
Krishnan, S ;
Lam, CC ;
Lu, QD ;
Nooijen, M ;
Pitzer, R ;
Ramanujam, J ;
Sadayappan, P ;
Sibiryakov, A .
MOLECULAR PHYSICS, 2006, 104 (02) :211-228
[8]   Software News and Update Quantum Chemistry in Parallel with PQS [J].
Baker, Jon ;
Wolinski, Krzysztof ;
Malagoli, Massimo ;
Kinghorn, Don ;
Wolinski, Pawel ;
Magyarfalvi, Gabor ;
Saebo, Svein ;
Janowski, Tomasz ;
Pulay, Peter .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (02) :317-335
[9]   MANY-BODY PERTURBATION-THEORY AND COUPLED CLUSTER THEORY FOR ELECTRON CORRELATION IN MOLECULES [J].
BARTLETT, RJ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1981, 32 :359-401
[10]   MANY-BODY PERTURBATION-THEORY, COUPLED-PAIR MANY-ELECTRON THEORY, AND IMPORTANCE OF QUADRUPLE EXCITATIONS FOR CORRELATION PROBLEM [J].
BARTLETT, RJ ;
PURVIS, GD .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1978, 14 (05) :561-581