Hybrid deep learning approaches for smartphone sensor-based human activity recognition

被引:25
|
作者
Ghate, Vasundhara [1 ]
Hemalatha, Sweetlin C. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn SCOPE, Chennai, Tamil Nadu, India
关键词
HAR; ADL; Inertial sensors; LSTM; GRU; CNN; DeepCNN-RF; RECURRENT NEURAL-NETWORKS;
D O I
10.1007/s11042-020-10478-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) has become one of the most important research fields to achieve real-time monitoring of human activities for timely decision making in various applications like fall detection, elderly care etc. Now-a-days, most people use smartphones which come with various embedded inertial sensors like accelerometer and gyroscope to monitor acceleration and angular velocity. These smartphone-based sensors have proven to be cost-effective solution in identification of activities belonging to ADL (Activities of Daily Living). Various Machine Learning, Deep learning and hybrid models have been proposed and implemented for HAR. This paper also proposes various hybrid deep learning approaches which combine Deep Neural Networks with other models like LSTM (Long Short Term Memory) Model and GRU (Gated Recurrent Unit) for effective classification of engineered features from CNN (Convolutional Neural Network) Model. A novel architecture that integrates CNN with Random Forest Classifier (DeepCNN-RF) is proposed to add randomness to the model. The proposed models have been tested on publicly available HAR Datasets like UCI HAR and WISDM Activity Recognition Datasets. Experimental results show that the hybrid models outperform the state-of-the-art data mining, machine learning techniques in UCI HAR and WISDM with an overall maximum accuracy of 97.77% and 98.2% respectively.
引用
收藏
页码:35585 / 35604
页数:20
相关论文
共 50 条
  • [1] Hybrid deep learning approaches for smartphone sensor-based human activity recognition
    Vasundhara Ghate
    Sweetlin Hemalatha C
    Multimedia Tools and Applications, 2021, 80 : 35585 - 35604
  • [2] Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques
    Wang, Huaijun
    Zhao, Jing
    Li, Junhuai
    Tian, Ling
    Tu, Pengjia
    Cao, Ting
    An, Yang
    Wang, Kan
    Li, Shancang
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [3] A comprehensive comparison of machine learning approaches with hyper-parameter tuning for smartphone sensor-based human activity recognition
    Ghate V.
    Hemalatha C S.
    Measurement: Sensors, 2023, 30
  • [4] Sensor-based Complex Human Activity Recognition from Smartwatch Data using Hybrid Deep Learning Network
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [5] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39
  • [6] New machine learning approaches for real-life human activity recognition using smartphone sensor-based data
    Garcia-Gonzalez, Daniel
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Luaces, Miguel R.
    KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [7] A comparative analysis on sensor-based human activity recognition using various deep learning techniques
    Indumathi V.
    Prabakeran S.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 919 - 938
  • [8] Inertial Sensor-based Human Activity Recognition Using Hybrid Deep Neural Networks
    Lei, Zhanzhi
    Xie, Jinfeng
    Xiao, Liang
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [9] Deep learning models for real-life human activity recognition from smartphone sensor data
    Garcia-Gonzalez, Daniel
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Luaces, Miguel R.
    INTERNET OF THINGS, 2023, 24
  • [10] LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    SENSORS, 2021, 21 (05) : 1 - 25