Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma

被引:39
|
作者
Hájek, R [1 ]
Butch, AW [1 ]
机构
[1] Masaryk Univ Hosp, Dept Internal Med Hematol Oncol, Brno 63900, Czech Republic
关键词
dendritic cells; vaccination; multiple myeloma; immunotherapy;
D O I
10.1007/BF02826210
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Dendritic cells (DCs) are extremely efficient antigen-presenting cells that are potent stimulators of both B and T cell immune responses. Although DCs are normally present in extremely small numbers in the circulation, recent advances in DC biology have made it possible to generate DCs in culture. DCs can be generated in vitro from various cellular sources including bone marrow, cord blood and peripheral blood. Although culture conditions are extremely diverse, the majority of protocols grow DCs in GM-CSF and either TNF-alpha and/or IL-4.The addition of other growth factors such as SCF and FIt-3 ligand can dramatically enhance DC recovery. It is important to appreciate that DC subsets have been Identified. Thus, DC at different stages of maturation, based on phenotype and capacity to capture antigen, can be obtained depending on culture conditions. For clinical applications, DCs can be generated in serum-free media and cryopreserved for future clinical applications. The ability to obtain DCs in numbers suitable for manipulating Immune responses has pushed DC-based Immunotherapies into the spotlight for treatment of various malignancies, including multiple myeloma, a B cell malignancy that is presently incurable. Although high-dose chemotherapy and transplantation have improved complete remission rates and overall survival in myeloma, immunotherapeutic strategies are needed for the additional cytoreduction needed to achieve a cure. Because DCs specialize in antigen capture and are extremely potent at stimulating T cell responses, they are ideally suited for generating anti-myeloma T cell responses in vivo. Several studies have demonstrated that myeloma protein, also called idiotype (Id), is sufficiently immunogenic and can be used to generate in vivo T cell responses in myeloma patients. Clinical trials using Id-pulsed DCs as a vaccine to treat minimal residual disease or relapsed myeloma are currently underway. Feasibility studies indicate that antigen-pulsed autologous DCs can be used to elicit in vivo Id-specific T cell responses. Additional studies are needed to optimize current DC vaccination protocols and determine clinical benefits associated with this approach. It is hoped that, following conventional therapies, a combination of adoptive immunotherapeutic modalities such as DCs together with myeloma-specific T cells may lead to improved clinical responses in multiple myeloma, and ultimately lead to complete remission and cure.
引用
收藏
页码:2 / 15
页数:14
相关论文
共 50 条
  • [1] Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma
    R Hájek
    AW Butch
    Medical Oncology, 2000, 17 : 2 - 15
  • [2] Dendritic cell-based immunotherapy in multiple myeloma
    Yi, Q
    LEUKEMIA & LYMPHOMA, 2003, 44 (12) : 2031 - 2038
  • [3] Practical blood dendritic cell vaccination for immunotherapy of multiple myeloma
    Vari, F.
    Munster, D. J.
    Hsu, J. L.
    Rossetti, T. R.
    Mahler, S. M.
    Gray, P. P.
    Turtle, C. J.
    Prue, R. L.
    Hart, D. N. J.
    BRITISH JOURNAL OF HAEMATOLOGY, 2008, 143 (03) : 374 - 377
  • [4] Optimizing dendritic cell-based immunotherapy in multiple myeloma
    Yi, Q
    Desikan, R
    Barlogie, B
    Munshi, N
    BRITISH JOURNAL OF HAEMATOLOGY, 2002, 117 (02) : 297 - 305
  • [5] Dendritic cell immunotherapy for cancer: Application to low-grade lymphoma and multiple myeloma
    Hart, DNJ
    Hill, GR
    IMMUNOLOGY AND CELL BIOLOGY, 1999, 77 (05): : 451 - 459
  • [6] Immunotherapy Using Dendritic Cells against Multiple Myeloma: How to Improve?
    Thanh-Nhan Nguyen-Pham
    Lee, Yoon-Kyung
    Kim, Hyeoung-Joon
    Lee, Je-Jung
    CLINICAL & DEVELOPMENTAL IMMUNOLOGY, 2012,
  • [7] Optimizing dendritic cell-based immunotherapy in multiple myeloma.
    Yi, Q
    Desikan, R
    Barlogie, B
    Munshi, N
    BLOOD, 2001, 98 (11) : 374A - 374A
  • [8] Preparation and characterization of an idiotype-dendritic cell vaccine for immunotherapy of multiple myeloma
    Opalka, B
    Schütt, P
    Brandhorst, D
    Buttkereit, U
    Tewes, M
    Moritz, T
    Seeber, S
    Nowrousian, MR
    Animal Cell Technology Meets Genomics, 2005, : 277 - 280
  • [9] Dendritic cell biology and its role in tumor immunotherapy
    Yingying Wang
    Ying Xiang
    Victoria W. Xin
    Xian-Wang Wang
    Xiao-Chun Peng
    Xiao-Qin Liu
    Dong Wang
    Na Li
    Jun-Ting Cheng
    Yan-Ning Lyv
    Shu-Zhong Cui
    Zhaowu Ma
    Qing Zhang
    Hong-Wu Xin
    Journal of Hematology & Oncology, 13
  • [10] Manipulating dendritic cell biology for the active immunotherapy of cancer
    O'Neill, DW
    Adams, S
    Bhardwaj, N
    BLOOD, 2004, 104 (08) : 2235 - 2246