Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source

被引:9
作者
Aptekarev, A. I. [1 ]
Lysov, V. G. [1 ]
Tulyakov, D. N. [1 ]
机构
[1] RAS, MV Keldysh Appl Math Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
random matrix; matrix model; eigenvalue distribution; Brownian bridge; multiple orthogonal polynomial; MULTIPLE ORTHOGONAL POLYNOMIALS; GAUSSIAN RANDOM MATRICES; LARGE-N LIMIT; STATISTICAL THEORY; COMPLEX SYSTEMS; ENERGY LEVELS; ASYMPTOTICS; UNIVERSALITY;
D O I
10.1007/s11232-009-0036-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider ensembles of random Hermitian matrices with a distribution measure determined by a polynomial potential perturbed by an external source. We find the genus-zero algebraic function describing the limit mean density of eigenvalues in the case of an anharmonic potential and a diagonal external source with two symmetric eigenvalues. We discuss critical regimes where the density support changes the connectivity or increases the genus of the algebraic function and consequently obtain local universal asymptotic representations for the density at interior and boundary points of its support (in the generic cases). The investigation technique is based on an analysis of the asymptotic properties of multiple orthogonal polynomials, equilibrium problems for vector potentials with interaction matrices and external fields, and the matrix Riemann-Hilbert boundary value problem.
引用
收藏
页码:448 / 468
页数:21
相关论文
共 30 条
[1]   Asymptotics of Hermite-Pade Approximants for Two Functions with Branch Points [J].
Aptekarev, A. I. .
DOKLADY MATHEMATICS, 2008, 78 (02) :717-719
[2]   Large n limit of Gaussian random matrices with external source, Part II [J].
Aptekarev, AI ;
Bleher, PM ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) :367-389
[3]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[4]  
APTEKAREV AI, 2008, INT MATH RES PAPERS
[5]  
APTEKAREV AI, 1986, 60 AC SCI USSR KELD
[6]   Large n limit of Gaussian random matrices with external source, part I [J].
Bleher, P ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :43-76
[7]   Large n limit of Gaussian random matrices with external source, part III:: Double scaling limit [J].
Bleher, Pavel M. ;
Kuijlaars, Arno B. J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :481-517
[8]  
Bleher PM, 2004, INT MATH RES NOTICES, V2004, P109
[9]   Level spacing of random matrices in an external source [J].
Brézin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1998, 58 (06) :7176-7185
[10]   Extension of level-spacing universality [J].
Brezin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1997, 56 (01) :264-269