Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery

被引:93
作者
Gower, Emily W. [1 ,6 ]
Lindsley, Kristina [2 ]
Tulenko, Samantha E. [1 ]
Nanji, Afshan A. [3 ]
Leyngold, Ilya [4 ]
McDonnell, Peter J. [5 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epi demiol, Baltimore, MD USA
[3] Oregon Hlth & Sci Univ, Casey Eye Inst, Portland, OR USA
[4] Duke Univ Hosp Dept ofOphthalmol, Div Oculofacial Plast & Reconstruct Surg, Durham, NC USA
[5] JohnsHopkins Univ Sch ofMedicine, Wilmer Eye Inst, Baltimore, MD USA
[6] Univ N Carolina, Gillings Sch Global Publ Hlth, 135 Dauer Dr, Chapel Hill, NC 27599 USA
来源
COCHRANE DATABASE OF SYSTEMATIC REVIEWS | 2017年 / 02期
关键词
Acute Disease; Anti-Bacterial Agents [administration & dosage; Cataract Extraction [adverse effects; Endophthalmitis [prevention & control; Injections; Intraocular [methods; Ophthalmic Solutions [administration & dosage; Postoperative Complications [prevention & control; Randomized Controlled Trials as Topic; Therapeutic Irrigation [methods; Visual Acuity; Adult; Humans; ACUTE-ONSET ENDOPHTHALMITIS; POSTOPERATIVE ENDOPHTHALMITIS; INTRACAMERAL CEFUROXIME; OCULAR TOXICITY; PROPHYLAXIS; INJECTION; ESCRS; SAFETY; MANAGEMENT; EFFICACY;
D O I
10.1002/14651858.CD006364.pub3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Endophthalmitis is a severe inflammation of the anterior or posterior (or both) chambers of the eye that may be sterile or associated with infection. It is a potentially vision-threatening complication of cataract surgery. Prophylactic measures for endophthalmitis are targeted against various sources of infection. Objectives To evaluate the effects of perioperative antibiotic prophylaxis for endophthalmitis following cataract surgery compared with no prophylaxis or other form of prophylaxis. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 12), Ovid MEDLINE, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE Daily (January 1946 to December 2016), Embase (January 1980 to December 2016), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to December 2016), the ISRCTN registry (www. isrctn. com/editAdvancedSearch), ClinicalTrials.gov (www. clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We used no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 6December 2016. We also searched for additional studies that cited any included trials using the Science Citation Index. Selection criteria We included randomized controlled trials that enrolled adults undergoing cataract surgery (any method and incision type) for lens opacities due to any origin. We included trials that evaluated preoperative antibiotics, intraoperative (intracameral, subconjunctival or systemic), or postoperative antibiotic prophylaxis for acute endophthalmitis. We excluded studies that evaluated antiseptic preoperative preparations using agents such as povidone iodine or antibiotics for treating acute endophthalmitis after cataract surgery. Data collection and analysis Two review authors independently reviewed abstracts and full-text articles for eligibility, assessed the risk of bias for each included study, and abstracted data. Main results Five studies met the inclusion criteria for this review, including 101,005 adults and 132 endophthalmitis cases. While the sample size was very large, the heterogeneity of the study designs and modes of antibiotic delivery made it impossible to conduct a formal metaanalysis. Interventions investigated included the utility of adding vancomycin and gentamycin to the irrigating solution compared with standard balanced saline solution irrigation alone, use of intracameral cefuroxime with or without topical levofloxacin perioperatively, periocular penicillin injections and topical chloramphenicol-sulfadimidine drops compared with topical antibiotics alone, and mode of antibiotic delivery (subconjunctival versus retrobulbar injections; fixed versus separate instillation of gatifloxacin and prednisolone). The risk of bias among studies was low to unclear due to information not being reported. We identified one ongoing study. Two studies compared any antibiotic with no antibiotic. One study, which compared irrigation with antibiotics in balanced salt solution (BSS) versus BSS alone, was not sufficiently powered to detect differences in endophthalmitis between groups (very low-certainty evidence). One study found reduced risk of endophthalmitis when combining intracameral cefuroxime and topical levofloxacin (risk ratio (RR) 0.14, 95% confidence interval (CI) 0.03 to 0.63; 8106 participants; high-certainty evidence) or using intracameral cefuroxime alone (RR 0.21, CI 0.06 to 0.74; 8110 participants; high-certainty evidence) compared with placebo, and an uncertain effect when using topical levofloxacin alone compared with placebo (RR 0.72, CI 0.32 to 1.61; 8103 participants; moderate-certainty evidence). Two studies found reduced risk of endophthalmitis when combining antibiotic injections during surgery and topical antibiotics comparedwith topical antibiotics alone (risk ratio (RR) 0.33, 95% confidence interval (CI) 0.12 to 0.92 (periocular penicillin and topical chloramphenicol-sulfadimidine; 6618 participants; moderate-certainty evidence); and RR 0.20, 95% CI 0.04 to 0.91 (intracameral cefuroxime and topical levofloxacin; 8101 participants; high-certainty evidence)). One study, which compared fixed versus separate instillation of gatifloxacin and prednisolone, was not sufficiently powered to detect differences in endophthalmitis between groups (very low-certainty evidence). Another study found no evidence of a difference in endophthalmitis when comparing subconjunctival versus retrobulbar antibiotic injections (RR 0.85, 95% CI 0.55 to 1.32; 77,015 participants; moderate-certainty evidence). Two studies reported any visual acuity outcome; one study, which compared fixed versus separate instillation of gatifloxacin and prednisolone, reported only that mean visual acuity was the same for both groups at 20 days postoperation. In the other study, the difference in the proportion of eyes with final visual acuity greater than 20/40 following endophthalmitis between groups receiving intracameral cefuroxime with or without topical levofloxacin compared with no intracameral cefuroxime was uncertain (RR 0.69, 95% CI 0.22 to 2.11; 29 participants; moderate-certainty evidence). Only one study reported adverse events (1 of 129 eyes had pupillary membrane in front of the intraocular lens and 8 eyes showed posterior capsule opacity). No study reported outcomes related to quality of life or economic outcomes. Authors' conclusions Multiple measures for preventing endophthalmitis following cataract surgery have been studied. High-certainty evidence shows that injection with cefuroxime with or without topical levofloxacin lowers the chance of endophthalmitis after surgery, and there is moderate- certainty evidence to suggest that using antibiotic eye drops in addition to antibiotic injection probably lowers the chance of endophthalmitis compared with using injections or eye drops alone. Clinical trials with rare outcomes require very large sample sizes and are quite costly to conduct; thus, it is unlikely that many additional clinical trials will be conducted to evaluate currently available prophylaxis. Practitioners should rely on current evidence to make informed decisions regarding prophylaxis choices.
引用
收藏
页数:45
相关论文
共 76 条
[1]  
[Anonymous], 1995, Arch Ophthalmol, V113, P1479
[2]  
[Anonymous], 2014, Review Manager (RevMan) Computer Program. Version 5.3
[3]  
[Anonymous], 2016, GRADEPRO VERS
[4]   Intracameral cefuroxime injection at the end of cataract surgery to reduce the incidence of endophthalmitis: French study [J].
Barreau, Germain ;
Mounier, Marcelle ;
Marin, Benoit ;
Adenis, Jean-Paul ;
Robert, Pierre-Yves .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2012, 38 (08) :1370-1375
[5]   ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery - Preliminary report of principal results from a European multicenter study [J].
Barry, P ;
Seal, DV ;
Gettinby, G ;
Lees, F ;
Peterson, M ;
Revie, CW .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2006, 32 (03) :407-410
[7]   Clinical observations associated with proven and unproven cases in the ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery [J].
Barry, Peter ;
Gardner, Susanne ;
Seal, David ;
Gettinby, George ;
Lees, Fiona ;
Peterson, Magnus ;
Revie, Crawford .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2009, 35 (09) :1523-1531
[8]   Surgical, antiseptic, and antibiotic practice in cataract surgery: Results from the European Observatory in 2013 [J].
Behndig, Anders ;
Cochener-Lamard, Beatrice ;
Gueell, Jose ;
Kodjikian, Laurent ;
Mencucci, Rita ;
Nuijts, Rudy ;
Pleyer, Uwe ;
Rosen, Paul ;
Szaflik, Jacek ;
Tassignon, Marie-Jose .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2015, 41 (12) :2635-2643
[9]   Postcataract surgery endophthalmitis after introduction of the ESCRS protocol: a 5-year study [J].
Beselga, Diana ;
Campos, Antonio ;
Castro, Miguel ;
Fernandes, Cristina ;
Carvalheira, Fausto ;
Campos, Sonia ;
Mendes, Silvia ;
Neves, Arminda ;
Campos, Joana ;
Violante, Luis ;
Sousa, Joao C. .
EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2014, 24 (04) :516-519
[10]   Intracameral antibiotics: Safety, efficacy, and preparation [J].
Braga-Mele, Rosa ;
Chang, David F. ;
Henderson, Bonnie An ;
Mamalis, Nick ;
Talley-Rostov, Audrey ;
Vasavada, Abhay .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2014, 40 (12) :2134-2142