On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid

被引:81
作者
Velarde, P. [1 ]
Valverde, L. [2 ]
Maestre, J. M. [1 ]
Ocampo-Martinez, C. [3 ]
Bordons, C. [1 ]
机构
[1] Univ Seville, Sch Engn, Syst Engn & Automat Dept, Seville 41092, Spain
[2] Univ Seville, Sch Engn, AICIA, Seville 41092, Spain
[3] Univ Politecn Cataluna, Dept Automat Control, Inst Robot & Informat Ind CSIC UPC, E-08028 Barcelona, Spain
关键词
Hydrogen storage; Microgrid; Model predictive control; Stochastic processes; Supply; Demand; ENERGY MANAGEMENT; SCENARIO APPROACH; INTEGRATION; TECHNOLOGIES; SYSTEM; GRIDS; MPC;
D O I
10.1016/j.jpowsour.2017.01.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 44 条
[1]   Scenario-based Model Predictive Control of Stochastic Constrained Linear Systems [J].
Bernardini, Daniele ;
Bemporad, Alberto .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :6333-6338
[2]   Optimal Energy Management for Renewable Energy Microgrids [J].
Bordons, Carlos ;
Garcia-Torres, Felix ;
Valverde, Luis .
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2015, 12 (02) :117-132
[3]  
Brooke A., GEN ALGEBRAIC MODELI
[4]   A study on the energy management in domestic micro-grids based on Model Predictive Control strategies [J].
Bruni, G. ;
Cordiner, S. ;
Mulone, V. ;
Rocco, V. ;
Spagnolo, F. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 102 :50-58
[5]   The scenario approach to robust control design [J].
Calafiore, Giuseppe C. ;
Campi, Marco C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :742-753
[6]  
Camacho E.F., 2004, ADV TK CONT SIGN PRO, DOI 10.1007/978-0-85729-398-5
[7]  
Christian H., 2014, Proceedings of the 19th World Congress The International Federation of Automatic Control, P10287, DOI [DOI 10.3182/20140824-6-ZA-1003, 10.3182/20140824-6-ZA-1003.00683, DOI 10.3182/20140824-6-ZA-1003.00683]
[8]  
de la Peña DM, 2005, IEEE DECIS CONTR P, P1361
[9]   Development and experimental validation of a PEM fuel cell dynamic model [J].
del Real, Alejandro J. ;
Arce, Alicia ;
Bordons, Carlos .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :310-324
[10]   A Distributed Control Strategy for Coordination of an Autonomous LVDC Microgrid Based on Power-Line Signaling [J].
Dragicevic, Tomislav ;
Guerrero, Josep M. ;
Vasquez, Juan C. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (07) :3313-3326