Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer

被引:36
作者
Barbosa, J. C. [1 ,2 ,3 ]
Reizabal, A. [4 ,5 ]
Correia, D. M. [1 ,2 ,3 ]
Fidalgo-Marijuan, A. [4 ,6 ]
Goncalves, R. [7 ]
Silva, M. M. [7 ]
Lanceros-Mendez, S. [4 ,8 ]
Costa, C. M. [1 ,7 ]
机构
[1] Univ Minho, Ctr Phys, P-4710058 Braga, Portugal
[2] Univ Tras Os Montes & Alto Douro, Dept Chem, P-5000801 Vila Real, Portugal
[3] Univ Tras Os Montes & Alto Douro, CQ VR, P-5000801 Vila Real, Portugal
[4] BCMaterials, Basque Ctr Mat Applicat & Nanostruct, UPV EHU Sci Pk, Leioa 48940, Spain
[5] Univ Basque Country, UPV EHU, Macromol Chem Res Grp LABQUIMAC, Dept Phys Chem,Fac Sci & Technol, Leioa, Spain
[6] Univ Basque Country, UPV EHU, Mineral & Petrol, Barrio Sarriena S-N, Leioa 48940, Bizkaia, Spain
[7] Univ Minho, Ctr Chem, P-4710058 Braga, Portugal
[8] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
关键词
PLLA; Porous membranes; Degradable; Battery systems; ELECTROCHEMICAL PERFORMANCES; POROUS MEMBRANES; SOLVENT; FILMS; PLLA; ELECTRODES; CATHODE;
D O I
10.1016/j.mtener.2020.100494
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sustainable materials are increasingly needed in lithium ion batteries in order to reduce their environmental impact and improve their recyclability. This work reports on the production of separators using poly (L-lactic acid) (PLLA) for lithium ion battery applications. PLLA separators were obtained by solvent casting technique, by varying polymer concentration in solution between 8 wt% and 12 wt% in order to evaluate their morphology, thermal, electrical and electrochemical properties. It is verified that morphology and porosity can be tuned by varying polymer concentration and that the separators are thermally stable up to 250 degrees C. The best ionic conductivity of 1.6 mS/cm was obtained for the PLLA separator prepared from 10 wt% polymer concentration in solution, due to the synergistic effect of the morphology and electrolyte uptake. For this membrane, a high discharge capacity value of 93 mAh/g was obtained at the rate of 1C. In this work, it is demonstrated that PLLA is a good candidate for the development of separator membranes, in order to produce greener and environmentally friendly batteries in a circular economy context. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 67 条
[31]  
Kozawa A., 2010, LITHIUM ION BATTERIE
[32]   Characterization of composite cellulosic separators for rechargeable lithium-ion batteries [J].
Kuribayashi, I .
JOURNAL OF POWER SOURCES, 1996, 63 (01) :87-91
[33]   Multifunctional energy storage composite structures with embedded lithium-ion batteries [J].
Ladpli, Purim ;
Nardari, Raphael ;
Kopsaftopoulos, Fotis ;
Chang, Fu-Kuo .
JOURNAL OF POWER SOURCES, 2019, 414 :517-529
[34]   Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy [J].
Landesfeind, Johannes ;
Hattendorff, Johannes ;
Ehrl, Andreas ;
Wall, Wolfgang A. ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) :A1373-A1387
[35]   Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries [J].
Li, Dan ;
Shi, Dingqin ;
Feng, Kai ;
Li, Xianfeng ;
Zhang, Huamin .
JOURNAL OF MEMBRANE SCIENCE, 2017, 530 :125-131
[36]   Synergistically Suppressing Lithium Dendrite Growth by Coating Poly-l-Lactic Acid on Sustainable Gel Polymer Electrolyte [J].
Li, Lei ;
Yu, Miao ;
Wang, Feijun ;
Zhang, Xinfang ;
Shao, Ziqiang .
ENERGY TECHNOLOGY, 2019, 7 (05)
[37]   Effect of silica nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries [J].
Liu, Hongyu ;
Dai, Zehui ;
Xu, Jun ;
Guo, Baohua ;
He, Xiangming .
JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (05) :582-586
[38]   Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells [J].
Logan, Bruce E. ;
Zikmund, Emily ;
Yang, Wulin ;
Rossi, Ruggero ;
Kim, Kyoung-Yeol ;
Saikaly, Pascal E. ;
Zhang, Fang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (15) :8977-8985
[39]   Life cycle assessment of recycling options for polylactic acid [J].
Maga, Daniel ;
Hiebel, Markus ;
Thonemann, Nils .
RESOURCES CONSERVATION AND RECYCLING, 2019, 149 :86-96
[40]   Applications of Poly(lactic Acid) in Commodities and Specialties [J].
Malinconico, Mario ;
Vink, Erwin T. H. ;
Cain, Andrea .
INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID), 2018, 282 :35-50