IDENTIFYING STRUCTURE OF NONSMOOTH CONVEX FUNCTIONS BY THE BUNDLE TECHNIQUE

被引:20
作者
Daniilidis, Aris [1 ]
Sagastizabal, Claudia [2 ,3 ]
Solodov, Mikhail [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[2] Elect Energy Res Ctr, CEPEL, Rio De Janeiro, Brazil
[3] IMPA, BR-22460320 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
nonsmooth convex optimization; VU-decomposition; primal-dual gradient structure; partial smoothness; bundle method; proximal point; PROXIMAL POINTS; CONVERGENCE; ALGORITHMS;
D O I
10.1137/080729864
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing nonsmooth convex functions, defined piece-wise by a finite number of functions each of which is either convex quadratic or twice continuously differentiable with positive definite Hessian on the set of interest. This is a particular case of functions with primal-dual gradient structure, a notion closely related to the so-called VU space decomposition: At a given point, nonsmoothness is locally restricted to the directions of the subspace V, while along the subspace U the behavior of the function is twice differentiable. Constructive identification of the two subspaces is important, because it opens the way to devising fast algorithms for nonsmooth optimization (by following iteratively the manifold of smoothness on which superlinear U-Newton steps can be computed). In this work we show that, for the class of functions in consideration, the information needed for this identification can be obtained from the output of a standard bundle method for computing proximal points, provided a minimizer satisfies the nondegeneracy and strong transversality conditions.
引用
收藏
页码:820 / 840
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 2007, Algorithmic Oper. Res
[2]  
[Anonymous], 2001, Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Ed. by, DOI [DOI 10.1007/3-540-45586-8_4, 10.1007/3-540-45586-8_4]
[3]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[4]  
Bonnans JF, 2006, NUMERICAL OPTIMIZATI, V2nd, DOI 10.1007/978-3-662-05078-1
[5]   Proximal quasi-Newton methods for nondifferentiable convex optimization [J].
Chen, XJ ;
Fukushima, M .
MATHEMATICAL PROGRAMMING, 1999, 85 (02) :313-334
[6]   CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION [J].
CORREA, R ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :261-275
[7]   Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems [J].
Daniilidis, Aris ;
Hare, Warren ;
Malick, Jerome .
OPTIMIZATION, 2006, 55 (5-6) :481-503
[8]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[9]   Local convergence of SQP methods for mathematical programs with equilibrium constraints [J].
Fletcher, R ;
Leyffer, S ;
Ralph, D ;
Scholtes, S .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) :259-286
[10]  
HARE W, 2003, THESIS S FRASER U BU