Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation

被引:187
作者
Ji, Tianjiao [1 ]
Zhao, Ying [1 ]
Ding, Yanping [1 ]
Wang, Jing [1 ]
Zhao, Ruifang [1 ]
Lang, Jiayan [1 ]
Qin, Hao [1 ]
Liu, Xiaoman [2 ]
Shi, Jian [1 ]
Tao, Ning [2 ]
Qin, Zhihai [2 ]
Nie, Guangjun [1 ]
Zhao, Yuliang [1 ]
机构
[1] Natl Ctr Nanosci & Technol NCNST, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
[2] Inst Biophys, CAS Key Lab Prot & Peptide Pharmaceut, Beijing 100101, Peoples R China
关键词
cancer-associated fibroblasts; drug delivery; fibroblast activation protein-alpha; morphological transformation; peptide assembly; STROMAL FIBROBLASTS; SERINE-PROTEASE; SURFACE-CHARGE; NANOPARTICLES; DELIVERY; TUMORS; PH; HETEROGENEITY; NANOMEDICINE; SPECIFICITY;
D O I
10.1002/anie.201506262
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein- (FAP-), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP- cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy.
引用
收藏
页码:1050 / 1055
页数:6
相关论文
共 43 条
[1]   Fibroblast-activation protein: a single marker that confidently differentiates morpheaform/infiltrative basal cell carcinoma from desmoplastic trichoepithelioma [J].
Abbas, Ossama ;
Richards, Joanna E. ;
Mahalingam, Meera .
MODERN PATHOLOGY, 2010, 23 (11) :1535-1543
[2]  
Adler-Abramovich L, 2009, NAT NANOTECHNOL, V4, P849, DOI [10.1038/nnano.2009.298, 10.1038/NNANO.2009.298]
[3]   Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein α [J].
Aertgeerts, K ;
Levin, I ;
Shi, LH ;
Snell, GP ;
Jennings, A ;
Prasad, GS ;
Zhang, YM ;
Kraus, ML ;
Salakian, S ;
Sridhar, V ;
Wijnands, R ;
Tennant, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (20) :19441-19444
[4]   Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites [J].
Aggarwal, Saurabh ;
Brennen, W. Nathaniel ;
Kole, Thomas P. ;
Schneider, Elizabeth ;
Topaloglu, Ozlem ;
Yates, Melinda ;
Cotter, Robert J. ;
Denmeade, Samuel R. .
BIOCHEMISTRY, 2008, 47 (03) :1076-1086
[5]  
Banwell EF, 2009, NAT MATER, V8, P596, DOI [10.1038/NMAT2479, 10.1038/nmat2479]
[6]   Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast [J].
Bauer, M. ;
Su, G. ;
Casper, C. ;
He, R. ;
Rehrauer, W. ;
Friedl, A. .
ONCOGENE, 2010, 29 (12) :1732-1740
[7]   Stromal fibroblasts in cancer initiation and progression [J].
Bhowmick, NA ;
Neilson, EG ;
Moses, HL .
NATURE, 2004, 432 (7015) :332-337
[8]   Strategies for advancing cancer nanomedicine [J].
Chauhan, Vikash P. ;
Jain, Rakesh K. .
NATURE MATERIALS, 2013, 12 (11) :958-962
[9]   Peptide-Based Methods for the Preparation of Nanostructured Inorganic Materials [J].
Chen, Chun-Long ;
Rosi, Nathaniel L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (11) :1924-1942
[10]  
CHEN CL, 2010, ANGEW CHEM, V122, P1968