Bohr's inequality for uniform algebras

被引:60
作者
Paulsen, VI [1 ]
Singh, D
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Univ Delhi, Dept Math, Delhi 110007, India
关键词
Bohr's inequality; uniform algebras;
D O I
10.1090/S0002-9939-04-07553-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a uniform algebra analogue of a classical inequality of Bohr's concerning Fourier coefficients of bounded holomorphic functions. The classical inequality follows trivially.
引用
收藏
页码:3577 / 3579
页数:3
相关论文
共 8 条
[1]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[2]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979
[3]  
BOAS HP, 2000, J KOREAN MATH SOC, V2, P321
[4]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[5]   BANACH-ALGEBRAS SATISFYING THE NON-UNITAL VON-NEUMANN-INEQUALITY [J].
DIXON, PG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :359-362
[6]  
Gamelin T.W., 1969, UNIFORM ALGEBRAS
[7]   On Bohr's inequality [J].
Paulsen, VI ;
Popescu, G ;
Singh, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :493-512
[8]   On a sentence by Herr Bohr. [J].
Sidon, S .
MATHEMATISCHE ZEITSCHRIFT, 1927, 26 :731-732