3.3 THz Quantum Cascade Laser Based on a Three GaAs/AlGaAs Quantum-Well Active Module with an Operating Temperature above 120 K

被引:3
作者
Khabibullin, R. A. [1 ,2 ]
Maremyanin, K., V [3 ,4 ]
Ponomarev, D. S. [1 ]
Galiev, R. R. [1 ,2 ]
Zaycev, A. A. [5 ]
Danilov, A., I [6 ]
Vasil'evskii, I. S. [7 ]
Vinichenko, A. N. [7 ]
Klochkov, A. N. [7 ]
Afonenko, A. A. [8 ]
Ushakov, D., V [8 ]
Morozov, S., V [3 ,4 ]
Gavrilenko, V., I [3 ,4 ]
机构
[1] Russian Acad Sci, VG Mokerov Inst Ultra High Frequency Semicond Ele, Moscow 117105, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603087, Russia
[4] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
[5] Natl Res Univ Elect Technol, Moscow 124498, Zelenograd, Russia
[6] JSC Polyus Res Inst MF Stelmakh, Moscow 117342, Russia
[7] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[8] Belarusian State Univ, Minsk 220030, BELARUS
基金
俄罗斯科学基金会;
关键词
quantum cascade laser; terahertz range; quantum well; molecular-beam epitaxy; METAL WAVE-GUIDE; OUTPUT POWER;
D O I
10.1134/S1063782622010080
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The design of a terahertz (THz) quantum cascade laser (QCL) with an active module based on three GaAs/Al-0(.1)8 Ga-0.82 As quantum wells for high-temperature generation at a frequency of about 3.3 THz is optimized. A heterostructure based on the developed design with an active region thickness of 10 mu m is grown by molecular-beam epitaxy with a deviation of the active-module thickness from the nominal of less than 1%. The fabricated THz QCLs with a double metal waveguide demonstrate lasing up to a temperature of 125 K. Investigations of the I-Vcharacteristics, the dependences of the integrated emission on the current, and the lasing spectra show good agreement with the calculated characteristics.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 23 条
[1]   Thermoelectrically cooled THz quantum cascade laser operating up to 210K [J].
Bosco, L. ;
Franckie, M. ;
Scalari, G. ;
Beck, M. ;
Wacker, A. ;
Faist, J. .
APPLIED PHYSICS LETTERS, 2019, 115 (01)
[2]   Specific Growth Features of Nanostructures for Terahertz Quantum Cascade Lasers and Their Physical Properties [J].
Cirlin, G. E. ;
Reznik, R. R. ;
Zhukov, A. E. ;
Khabibullin, R. A. ;
Maremyanin, K. V. ;
Gavrilenko, V. I. ;
Morozov, S. V. .
SEMICONDUCTORS, 2020, 54 (09) :1092-1095
[3]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[4]   Terahertz radiation generation in multilayer quantum-cascade heterostructures [J].
Ikonnikov, A. V. ;
Marem'yanin, K. V. ;
Morozov, S. V. ;
Gavrilenko, V. I. ;
Pavlov, A. Yu. ;
Shchavruk, N. V. ;
Khabibullin, R. A. ;
Reznik, R. R. ;
Cirlin, G. E. ;
Zubov, F. I. ;
Zhukov, A. E. ;
Alferov, Zh. I. .
TECHNICAL PHYSICS LETTERS, 2017, 43 (04) :362-365
[5]   Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode [J].
Jin, Yuan ;
Reno, John L. ;
Kumar, Sushil .
OPTICA, 2020, 7 (06) :708-715
[6]   Thermoelectric-cooled terahertz quantum cascade lasers [J].
Kainz, Martin A. ;
Semtsiv, Mykhaylo P. ;
Tsianos, Georgios ;
Kurlov, Sergii ;
Masselink, W. Ted ;
Schoenhuber, Sebastian ;
Detz, Hermann ;
Schrenk, Werner ;
Unterrainer, Karl ;
Strasser, Gottfried ;
Andrews, Aaron M. .
OPTICS EXPRESS, 2019, 27 (15) :20688-20693
[7]  
KAZARINOV RF, 1972, SOV PHYS SEMICOND+, V6, P120
[8]  
KAZARINOV RF, 1971, SOV PHYS SEMICOND+, V5, P707
[9]   Silver-based double metal waveguide for terahertz quantum cascade laser [J].
Khabibullin, R. ;
Ushakov, D. ;
Afonenko, A. ;
Shchavruk, N. ;
Ponomarev, D. ;
Volkov, O. ;
Pavlovskiy, V ;
Vasil'evskii, I ;
Safonov, D. ;
Dubinov, A. .
INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022
[10]  
Khabibullin R., 2018, P SOC PHOTO-OPT INS, V11066