Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction

被引:311
作者
Feng, Yonggang [1 ,2 ]
Yang, Hao [3 ]
Zhang, Ying [1 ]
Huang, Xiaoqing [1 ,2 ]
Li, Leigang [2 ]
Cheng, Tao [3 ]
Shao, Qi [2 ,4 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[4] Southern Univ Sci & Technol, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Coupling; Urea production; CO2; electroreduction; Palladium; Tellurium;
D O I
10.1021/acs.nanolett.0c03400
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The renewable electricity-driven reduction of carbon dioxide (CO2RR) is a promising technology for carbon utilization. However, it is still a challenge to broaden the application of CO2RR Herein, we report a Te-doped Pd nanocrystals (Te-Pd NCs) for promoting urea synthesis by coupling CO2RR with electrochemical reduction of nitrite. The electrochemical synthesis of urea has been achieved with nearly 12.2% Faraday efficiency (FE) and 88.7% N atom efficiency (NE) at -1.1 V versus reversible hydrogen electrode (vs RHE), much higher than those of pure Pd NCs (4.2% FE and 21.8% NE). Significantly, an FE of similar to 10.2% and an NE of similar to 82.3% for urea solution production via an optimized flow cell system have been realized, where a solution with up to 0.95 wt % of urea has been obtained. Mechanistic insights show that Te-doping not only optimizes the CO2/CO adsorption but also promotes NH3 production, fully meeting the requirements of urea synthesis.
引用
收藏
页码:8282 / 8289
页数:8
相关论文
共 34 条
[1]   Poisoning and deactivation of palladium catalysts [J].
Albers, P ;
Pietsch, J ;
Parker, SF .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2001, 173 (1-2) :275-286
[2]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[3]   Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions [J].
Chen, Chen ;
Zhu, Xiaorong ;
Wen, Xiaojian ;
Zhou, Yangyang ;
Zhou, Ling ;
Li, Hao ;
Tao, Li ;
Li, Qiling ;
Du, Shiqian ;
Liu, Tingting ;
Yan, Dafeng ;
Xie, Chao ;
Zou, Yuqin ;
Wang, Yanyong ;
Chen, Ru ;
Huo, Jia ;
Li, Yafei ;
Cheng, Jun ;
Su, Hui ;
Zhao, Xu ;
Cheng, Weiren ;
Liu, Qinghua ;
Lin, Hongzhen ;
Luo, Jun ;
Chen, Jun ;
Dong, Mingdong ;
Cheng, Kai ;
Li, Conggang ;
Wang, Shuangyin .
NATURE CHEMISTRY, 2020, 12 (08) :717-724
[4]   Electrochemically Generated Copper Carbonyl for Selective Dimethyl Carbonate Synthesis [J].
Davies, Bethan J. V. ;
Saric, Manuel ;
Figueiredo, Marta C. ;
Schjodt, Niels C. ;
Dahl, Soren ;
Moses, Poul Georg ;
Escudero-Escribano, Maria ;
Arenz, Matthias ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (02) :859-866
[5]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[6]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[7]  
Gabardo C. M., 2019, NAT COMMUN, V10, P1
[8]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210
[9]   Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction [J].
Gao, Dunfeng ;
Zhou, Hu ;
Cai, Fan ;
Wang, Jianguo ;
Wang, Guoxiong ;
Bao, Xinhe .
ACS CATALYSIS, 2018, 8 (02) :1510-1519
[10]   Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2018, 8 (02) :1490-1499