Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement

被引:172
作者
Lin, Shaoting [1 ]
Cao, Changyong [1 ]
Wang, Qiming [1 ]
Gonzalez, Mark [1 ]
Dolbow, John E. [2 ]
Zhao, Xuanhe [1 ,3 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[3] MIT, Dept Mech Engn, Soft Act Mat Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ARTICULAR-CARTILAGE; NETWORK HYDROGELS; STRENGTH; FRACTURE;
D O I
10.1039/c4sm01039f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogels' applications are usually limited by their weak mechanical properties. Despite recent great progress in developing tough hydrogels, it is still challenging to achieve high values of stretchability, toughness and modulus all together in synthetic hydrogels. In this paper, we designed highly stretchable, tough, yet stiff hydrogel composites via a combination of nanoscale hybrid crosslinking and macroscale fiber reinforcement. The hydrogel composites were constructed by impregnating a 3D-printed thermoplastic-fiber mesh with a tough hydrogel crosslinked both covalently and ionically. The hydrogel composites can achieve a fracture energy of over 30 000 J m(-2), a modulus of over 6 MPa, and can be stretched over 2.8 times even in the presence of large structural defects. The enhancement of toughness in the new hydrogel composites relies on multiple pairs of toughening mechanisms which span over multiple length scales. A theoretical model is further developed to predict the toughness and modulus of the hydrogel composites and guide the design of future materials.
引用
收藏
页码:7519 / 7527
页数:9
相关论文
共 35 条
[1]   Strong fiber-reinforced hydrogel [J].
Agrawal, Animesh ;
Rahbar, Nima ;
Calvert, Paul D. .
ACTA BIOMATERIALIA, 2013, 9 (02) :5313-5318
[2]   Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction [J].
Bai, Tao ;
Zhang, Peng ;
Han, Yanjiao ;
Liu, Yuan ;
Liu, Wenguang ;
Zhao, Xiaoli ;
Lu, William .
SOFT MATTER, 2011, 7 (06) :2825-2831
[3]   Solvent control of crack dynamics in a reversible hydrogel [J].
Baumberger, T ;
Caroli, C ;
Martina, D .
NATURE MATERIALS, 2006, 5 (07) :552-555
[4]   MATRIX FRACTURE IN FIBER-REINFORCED CERAMICS [J].
BUDIANSKY, B ;
HUTCHINSON, JW ;
EVANS, AG .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1986, 34 (02) :167-189
[5]   Hydrogels for Soft Machines [J].
Calvert, Paul .
ADVANCED MATERIALS, 2009, 21 (07) :743-756
[6]   Synthetically Simple, Highly Resilient Hydrogels [J].
Cui, Jun ;
Lackey, Melissa A. ;
Madkour, Ahmad E. ;
Saffer, Erika M. ;
Griffin, David M. ;
Bhatia, Surita R. ;
Crosby, Alfred J. ;
Tew, Gregory N. .
BIOMACROMOLECULES, 2012, 13 (03) :584-588
[7]   Double-network hydrogels with extremely high mechanical strength [J].
Gong, JP ;
Katsuyama, Y ;
Kurokawa, T ;
Osada, Y .
ADVANCED MATERIALS, 2003, 15 (14) :1155-+
[8]   Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions [J].
Guo, Mingyu ;
Pitet, Louis M. ;
Wyss, Hans M. ;
Vos, Matthijn ;
Dankers, Patricia Y. W. ;
Meijer, E. W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :6969-6977
[9]   Ionically Cross-Linked Triblock Copolymer Hydrogels with High Strength [J].
Henderson, Kevin J. ;
Zhou, Tian C. ;
Otim, Kathryn J. ;
Shull, Kenneth R. .
MACROMOLECULES, 2010, 43 (14) :6193-6201
[10]   Crack blunting and the strength of soft elastic solids [J].
Hui, CY ;
Jagota, A ;
Bennison, SJ ;
Londono, JD .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2034) :1489-1516