Differing current and optical return stroke speeds in lightning

被引:28
作者
Liang, C. [1 ]
Carlson, B. [2 ,3 ]
Lehtinen, N. [1 ]
Cohen, M. [4 ]
Marshall, R. A. [5 ]
Inan, U. [1 ,6 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Carthage Coll, Dept Phys, Kenosha, WI USA
[3] Birkeland Ctr Space Sci, Bergen, Norway
[4] Georgia Inst Technol, Atlanta, GA 30332 USA
[5] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[6] Koc Univ, Istanbul, Turkey
基金
欧洲研究理事会;
关键词
return stroke; current wave speed; optical radiation wave speed; electrodynamics; thermodynamics; EMISSION COEFFICIENTS; RADIATION; TIME; PLASMAS; CHANNEL; FLASHES; FIELDS; MODEL; AIR;
D O I
10.1002/2014GL059703
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
During the return stroke in downward negative cloud-to-ground lightning, a current wave propagates upward from the ground along the lightning channel. The current wave causes rapid heating of the channel and induces intense optical radiation. The optical radiation wave propagation speed along the channel has been measured to be between 1/5 and 2/3 of the speed of light. The current wave speed is commonly assumed to be the same but cannot be directly measured. Past modeling efforts treat either the thermodynamics or electrodynamics. We present the first model that simultaneously treats the coupled current and thermodynamic physics in the return stroke channel. We utilize numerical simulations using realistic high-temperature air plasma properties that self-consistently solve Maxwell's equations coupled with equations of air plasma thermodynamics. The predicted optical radiation wave speed, rise time, and attenuation agree well with observations. The model predicts significantly higher current return stroke speed.
引用
收藏
页码:2561 / 2567
页数:7
相关论文
共 35 条
[1]   Net Emission Coefficients of Radiation in Air and SF6 Thermal Plasmas [J].
Aubrecht, Vladimir ;
Bartlova, Milada .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2009, 29 (02) :131-147
[2]  
BAZELYAN EM, 1998, SPARK DISCHARGE, P38
[3]  
Berger K., 1975, Electra, P23
[4]   Terrestrial gamma ray flash production by active lightning leader channels [J].
Carlson, B. E. ;
Lehtinen, N. G. ;
Inan, U. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[5]  
COORAY V, 2006, LIGHTNING FLASH, P144
[6]   Ionospheric D region remote sensing using VLF radio atmospherics [J].
Cummer, SA ;
Inan, US ;
Bell, TF .
RADIO SCIENCE, 1998, 33 (06) :1781-1792
[7]   The US National Lightning Detection Network™ and applications of cloud-to-ground lightning data by electric power utilities [J].
Cummins, KL ;
Krider, EP ;
Malone, MD .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1998, 40 (04) :465-480
[8]   Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range [J].
D'Angola, A. ;
Colonna, G. ;
Gorse, C. ;
Capitelli, M. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 46 (01) :129-150
[9]   ENERGY-DISSIPATION IN LIGHTNING [J].
HILL, RD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1977, 82 (31) :4967-4968
[10]   ANALYSIS OF IRREGULAR PATHS OF LIGHTNING CHANNELS [J].
HILL, RD .
JOURNAL OF GEOPHYSICAL RESEARCH, 1968, 73 (06) :1897-+