K-property for Maharam extensions of non-singular Bernoulli and Markov shifts

被引:11
作者
Danilenko, Alexandre I. [1 ]
Lemanczyk, Mariusz [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkiv, Ukraine
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
关键词
PRODUCT;
D O I
10.1017/etds.2018.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that each conservative non-singular Bernoulli shift is either of type II1 or III1. Moreover, in the latter case the corresponding Maharam extension of the shift is a K-automorphism. This extends earlier results obtained by Kosloff for equilibrial shifts. Non-equilibrial shifts of type III1 are constructed. We further generalize (partly) the main results to non-singular Markov shifts.
引用
收藏
页码:3292 / 3321
页数:30
相关论文
共 27 条
[1]   RATIONAL ERGODICITY AND A METRIC INVARIANT FOR MARKOV SHIFTS [J].
AARONSON, J .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 27 (02) :93-123
[2]  
Araki H., 1968, Publ. Res. Inst. Math. Sci., V4, P51, DOI 10.2977/prims/1195195263
[3]   ERGODIC MEASURES ARE OF WEAK PRODUCT TYPE [J].
BROWN, G ;
DOOLEY, AH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (JUL) :129-145
[4]   ON THE KRIEGER-ARAKI-WOODS RATIO SET [J].
BROWN, G ;
DOOLEY, AH ;
LAKE, J .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (01) :1-13
[5]   ABELIAN COCYCLES FOR NONSINGULAR ERGODIC TRANSFORMATIONS AND THE GENERICITY OF TYPE-III1 TRANSFORMATIONS [J].
CHOKSI, JR ;
HAWKINS, JM ;
PRASAD, VS .
MONATSHEFTE FUR MATHEMATIK, 1987, 103 (03) :187-205
[6]  
Connes A., 1985, Ergodic Theory and Dynamical Systems, V5, P203, DOI DOI 10.1017/S0143385700002868
[7]   EXAMPLES OF NATURAL EXTENSIONS OF NONSINGULAR ENDOMORPHISMS [J].
DAJANI, KG ;
HAWKINS, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1211-1217
[8]  
Danilenko A. I., 2012, Mathematics of Complexity and Dynamical Systems, V1-3, P329
[9]   Product and Markov measures of type III [J].
Dooley, AH ;
Klemes, I ;
Quas, AN .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 65 :84-110
[10]   The critical dimensions of Hamachi shifts [J].
Dooley, Anthony H. ;
Mortiss, Genevieve .
TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (01) :57-66