Resonant tori of arbitrary codimension for quasi-periodically forced systems

被引:20
作者
Corsi, Livia [1 ]
Gentile, Guido [2 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St NW, Atlanta, GA 30332 USA
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2017年 / 24卷 / 01期
基金
欧洲研究理事会;
关键词
INTEGRABLE HAMILTONIAN-SYSTEMS; LOWER-DIMENSIONAL TORI; INVARIANT TORI; KAM THEOREM;
D O I
10.1007/s00030-016-0425-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of rotators subject to a small quasi periodic forcing. We require the forcing to be analytic and satisfy a time reversibility property and we assume its frequency vector to be Bryuno. Then we prove that, without imposing any non-degeneracy condition on the forcing, there exists at least one quasi-periodic solution with the same frequency vector as the forcing. The result can be interpreted as a theorem of persistence of lower-dimensional tori of arbitrary codimension in degenerate cases.
引用
收藏
页数:21
相关论文
共 25 条
[1]   SYMMETRY-BREAKING IN HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
ZELATI, VC ;
EKELAND, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) :165-184
[2]  
[Anonymous], NATO ASI C
[3]  
[Anonymous], PROGR NONLINEAR DIFF
[4]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[5]   KAM theorem and quantum field theory [J].
Bricmont, J ;
Gawedzki, K ;
Kupiainen, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :699-727
[6]   The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems [J].
Cheng, CQ ;
Wang, SL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (02) :311-326
[7]   Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems [J].
Cheng, CQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) :529-559
[8]   Lower dimensional invariant tori in the regions of instability for nearly integrable hamiltonian systems [J].
Cheng, CQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) :385-419
[9]   KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems [J].
Cong, F ;
Küpper, T ;
Li, Y ;
You, J .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (01) :49-68
[10]   Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems [J].
Corsi, Livia ;
Gentile, Guido .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :1079-1140