Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes

被引:238
作者
Hou, Junxian [1 ]
Lu, Languang [1 ]
Wang, Li [2 ]
Ohma, Atsushi [3 ]
Ren, Dongsheng [1 ]
Feng, Xuning [1 ]
Li, Yan [1 ]
Li, Yalun [1 ]
Ootani, Issei [3 ]
Han, Xuebing [1 ]
Ren, Weining [1 ]
He, Xiangming [2 ]
Nitta, Yoshiaki [3 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Nissan Motor Co Ltd, Adv Mat & Proc Lab, 1 Natsushima Cho, Yokosuka, Kanagawa 2378523, Japan
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LI-ION; HIGH-SAFETY; FIRE; FAILURE; PROPAGATION; MECHANISMS; LIPF6;
D O I
10.1038/s41467-020-18868-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Concentrated electrolytes usually demonstrate good electrochemical performance and thermal stability, and are also supposed to be promising when it comes to improving the safety of lithium-ion batteries due to their low flammability. Here, we show that LiN(SO2F)(2)-based concentrated electrolytes are incapable of solving the safety issues of lithium-ion batteries. To illustrate, a mechanism based on battery material and characterizations reveals that the tremendous heat in lithium-ion batteries is released due to the reaction between the lithiated graphite and LiN(SO2F)(2) triggered thermal runaway of batteries, even if the concentrated electrolyte is non-flammable or low-flammable. Generally, the flammability of an electrolyte represents its behaviors when oxidized by oxygen, while it is the electrolyte reduction that triggers the chain of exothermic reactions in a battery. Thus, this study lights the way to a deeper understanding of the thermal runaway mechanism in batteries as well as the design philosophy of electrolytes for safer lithium-ion batteries. Concentrated electrolytes display superior thermal stability due to their non-flammability nature. Here, the authors show that LiN(SO2F)(2)-based concentrated electrolytes are incapable of solving the safety issues due to heat release during reaction between the lithiated graphite and electrolyte.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts [J].
Eshetu, Gebrekidan Gebresilassie ;
Bertrand, Jean-Pierre ;
Lecocq, Amandine ;
Grugeon, Sylvie ;
Laruelle, Stephane ;
Armand, Michel ;
Marlair, Guy .
JOURNAL OF POWER SOURCES, 2014, 269 :804-811
[2]   LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives [J].
Eshetu, Gebrekidan Gebresilassie ;
Grugeon, Sylvie ;
Gachot, Gregory ;
Mathiron, David ;
Armand, Michel ;
Laruelle, Stephane .
ELECTROCHIMICA ACTA, 2013, 102 :133-141
[3]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[4]   Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode [J].
Feng, Xuning ;
Zheng, Siqi ;
He, Xiangming ;
Wang, Li ;
Wang, Yu ;
Ren, Dongsheng ;
Ouyang, Minggao .
FRONTIERS IN ENERGY RESEARCH, 2018, 6
[5]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273
[6]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[7]   Experimental Study on Module-to-Module Thermal Runaway-Propagation in a Battery Pack [J].
Gao, Shang ;
Lu, Languang ;
Ouyang, Minggao ;
Duan, Yongkang ;
Zhu, Xinwei ;
Xu, Chengshan ;
Ng, Benjamin ;
Kamyab, Niloofar ;
White, Ralph E. ;
Coman, Paul T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) :A2065-A2073
[8]   A Joint DFT and Experimental Study of an Imidazolidinone Additive in Lithium-Ion Cells [J].
Gauthier, Roby ;
Hall, David S. ;
Taskovic, T. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) :A3707-A3715
[9]   Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries [J].
Gong, Jinqiu ;
Wang, Qingsong ;
Sun, Jinhua .
THERMOCHIMICA ACTA, 2017, 655 :176-180
[10]   Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties [J].
Han, Hong-Bo ;
Zhou, Si-Si ;
Zhang, Dai-Jun ;
Feng, Shao-Wei ;
Li, Li-Fei ;
Liu, Kai ;
Feng, Wen-Fang ;
Nie, Jin ;
Li, Hong ;
Huang, Xue-Jie ;
Armand, Michel ;
Zhou, Zhi-Bin .
JOURNAL OF POWER SOURCES, 2011, 196 (07) :3623-3632