Modified spectral boundary conditions in the bag model

被引:3
|
作者
Abrikosov, A. A., Jr. [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
关键词
D O I
10.1088/0305-4470/39/21/S01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a reduced form of Atiah-Patodi-Singer spectral boundary conditions for an odd (d) dimensional spatial bag evolving in even (d + 1) dimensional spacetime. The modified boundary conditions are manifestly chirally invariant and do not depend on time. This allows us to apply the Hamiltonian approach to confined massless fermions and study chirality effects in spatially closed volume. The modified boundary conditions are equally suitable for chiral fermions in Minkowski and Euclidean metric spacetimes.
引用
收藏
页码:6109 / 6115
页数:7
相关论文
共 50 条
  • [1] Spectral asymmetry for bag boundary conditions
    Beneventano, CG
    Santangelo, EM
    Wipf, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44): : 9343 - 9354
  • [2] Strong ellipticity and spectral properties of chiral bag boundary conditions
    Beneventano, CG
    Gilkey, PB
    Kirsten, K
    Santangelo, EM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (45): : 11533 - 11543
  • [3] The integral form of APS boundary conditions in the bag model
    Abrikosov, A. A., Jr.
    Wipf, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (19) : 5163 - 5172
  • [4] ζ-function for a model with spectral dependent boundary conditions
    Falomir, Horacio
    Loewe, Marcelo
    Munoz, Enrique
    Rojas, Juan Cristobal
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (07)
  • [5] MODIFIED LINEAR BOUNDARY-CONDITION IN THE BAG MODEL AND NUCLEON PROPERTIES
    GORNICKI, P
    SZYMACHA, A
    PHYSICS LETTERS B, 1986, 175 (02) : 211 - 214
  • [6] Chiral bag boundary conditions on the ball
    Esposito, G
    Kirsten, K
    PHYSICAL REVIEW D, 2002, 66 (08):
  • [8] Integrable boundary conditions of the modified Volterra model
    Kajinaga, Y
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3021 - 3025
  • [9] Chiral anomaly with MIT bag boundary conditions
    Marachevsky, VN
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (06) : 651 - 656
  • [10] Stability theorems for chiral bag boundary conditions
    Gilkey, P
    Kirsten, K
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (02) : 147 - 163