A Survey of Deep Learning Methods for Cyber Security

被引:287
作者
Berman, Daniel S. [1 ]
Buczak, Anna L. [1 ]
Chavis, Jeffrey S. [1 ]
Corbett, Cherita L. [1 ]
机构
[1] JHU, Appl Phys Lab, APL1, Laurel, MD 20910 USA
关键词
cyber analytics; deep learning; deep neural networks; deep autoencoders; deep belief networks; restricted Boltzmann machines; convolutional neural networks; ANDROID MALWARE CHARACTERIZATION; NETWORK INTRUSION DETECTION; ATTACK DETECTION; BELIEF NETWORKS; NEURAL-NETWORKS; REPRESENTATIONS; CLASSIFICATION; INTERNET;
D O I
10.3390/info10040122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This survey paper describes a literature review of deep learning (DL) methods for cyber security applications. A short tutorial-style description of each DL method is provided, including deep autoencoders, restricted Boltzmann machines, recurrent neural networks, generative adversarial networks, and several others. Then we discuss how each of the DL methods is used for security applications. We cover a broad array of attack types including malware, spam, insider threats, network intrusions, false data injection, and malicious domain names used by botnets.
引用
收藏
页数:35
相关论文
共 50 条
[41]   A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks [J].
Rodriguez, Eva ;
Otero, Beatriz ;
Gutierrez, Norma ;
Canal, Ramon .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03) :1920-1955
[42]   A comprehensive survey on optimizing deep learning models by metaheuristics [J].
Akay, Bahriye ;
Karaboga, Dervis ;
Akay, Rustu .
ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) :829-894
[43]   Deep learning for Alzheimer's disease diagnosis: A survey [J].
Khojaste-Sarakhsi, M. ;
Haghighi, Seyedhamidreza Shahabi ;
Ghomi, S. M. T. Fatemi ;
Marchiori, Elena .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
[44]   A Survey on the Applications of Semi-supervised Learning to Cyber-security [J].
Mvula, Paul Kiyambu ;
Branco, Paula ;
Jourdan, Guy-Vincent ;
Viktor, Herna Lydia .
ACM COMPUTING SURVEYS, 2024, 56 (10)
[45]   Music Deep Learning: A Survey on Deep Learning Methods for Music Processing [J].
Iliadis, Lazaros Alexios ;
Sotiroudis, Sotirios P. ;
Kokkinidis, Kostas ;
Sarigiannidis, Panagiotis ;
Nikolaidis, Spiridon ;
Goudos, Sotirios K. .
2022 11TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2022,
[46]   A brief survey of deep learning methods for android Malware detection [J].
Joomye, Abdurraheem ;
Ling, Mee Hong ;
Yau, Kok-Lim Alvin .
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2025, 16 (02) :711-733
[47]   Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications [J].
Vieira, Sandra ;
Pinaya, Walter H. L. ;
Mechelli, Andrea .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2017, 74 :58-75
[48]   Evaluating Uses of Deep Learning Methods for Causal Inference [J].
Whata, Albert ;
Chimedza, Charles .
IEEE ACCESS, 2022, 10 :2813-2827
[49]   Machine Learning and Deep Learning Methods for Intrusion Detection Systems in IoMT: A survey [J].
Rbah, Yahya ;
Mahfoudi, Mohammed ;
Balboul, Younes ;
Fattah, Mohammed ;
Mazer, Said ;
Elbekkali, Moulhime ;
Bernoussi, Benaissa .
2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, :740-748
[50]   Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain [J].
Rosenberg, Ishai ;
Shabtai, Asaf ;
Elovici, Yuval ;
Rokach, Lior .
ACM COMPUTING SURVEYS, 2021, 54 (05)