A Survey of Deep Learning Methods for Cyber Security

被引:287
作者
Berman, Daniel S. [1 ]
Buczak, Anna L. [1 ]
Chavis, Jeffrey S. [1 ]
Corbett, Cherita L. [1 ]
机构
[1] JHU, Appl Phys Lab, APL1, Laurel, MD 20910 USA
关键词
cyber analytics; deep learning; deep neural networks; deep autoencoders; deep belief networks; restricted Boltzmann machines; convolutional neural networks; ANDROID MALWARE CHARACTERIZATION; NETWORK INTRUSION DETECTION; ATTACK DETECTION; BELIEF NETWORKS; NEURAL-NETWORKS; REPRESENTATIONS; CLASSIFICATION; INTERNET;
D O I
10.3390/info10040122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This survey paper describes a literature review of deep learning (DL) methods for cyber security applications. A short tutorial-style description of each DL method is provided, including deep autoencoders, restricted Boltzmann machines, recurrent neural networks, generative adversarial networks, and several others. Then we discuss how each of the DL methods is used for security applications. We cover a broad array of attack types including malware, spam, insider threats, network intrusions, false data injection, and malicious domain names used by botnets.
引用
收藏
页数:35
相关论文
共 50 条
[31]   Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches [J].
Kotenko, Igor ;
Izrailov, Konstantin ;
Buinevich, Mikhail .
SENSORS, 2022, 22 (04)
[32]   Cyber Security Intrusion Detection and Bot Data Collection using Deep Learning in the IoT [J].
Alotaibi, Fahad Ali ;
Mishra, Shailendra .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) :421-432
[33]   Cyber Security in Power Systems Using Meta-Heuristic and Deep Learning Algorithms [J].
Diaba, Sayawu Yakubu ;
Shafie-Khah, Miadreza ;
Elmusrati, Mohammed .
IEEE ACCESS, 2023, 11 :18660-18672
[34]   Cyber security meets artificial intelligence: a survey [J].
Li, Jian-hua .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (12) :1462-1474
[35]   Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey [J].
Liu, Hongyu ;
Lang, Bo .
APPLIED SCIENCES-BASEL, 2019, 9 (20)
[36]   Survey of continuous deep learning methods and techniques used for incremental learning [J].
Leo, Justin ;
Kalita, Jugal .
NEUROCOMPUTING, 2024, 582
[37]   Mitigating Cyber Risks in Smart Cyber-Physical Power Systems Through Deep Learning and Hybrid Security Models [J].
Dayarathne, M. A. S. P. ;
Jayathilaka, M. S. M. ;
Bandara, R. M. V. A. ;
Logeeshan, V. ;
Kumarawadu, S. ;
Wanigasekara, Chathura .
IEEE ACCESS, 2025, 13 :37474-37492
[38]   Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS [J].
Olowononi, Felix O. ;
Rawat, Danda B. ;
Liu, Chunmei .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (01) :524-552
[39]   Deep Learning for Biometrics: A Survey [J].
Sundararajan, Kalaivani ;
Woodard, Damon L. .
ACM COMPUTING SURVEYS, 2018, 51 (03)
[40]   Deep Learning on Graphs: A Survey [J].
Zhang, Ziwei ;
Cui, Peng ;
Zhu, Wenwu .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) :249-270