A Survey of Deep Learning Methods for Cyber Security

被引:274
作者
Berman, Daniel S. [1 ]
Buczak, Anna L. [1 ]
Chavis, Jeffrey S. [1 ]
Corbett, Cherita L. [1 ]
机构
[1] JHU, Appl Phys Lab, APL1, Laurel, MD 20910 USA
关键词
cyber analytics; deep learning; deep neural networks; deep autoencoders; deep belief networks; restricted Boltzmann machines; convolutional neural networks; ANDROID MALWARE CHARACTERIZATION; NETWORK INTRUSION DETECTION; ATTACK DETECTION; BELIEF NETWORKS; NEURAL-NETWORKS; REPRESENTATIONS; CLASSIFICATION; INTERNET;
D O I
10.3390/info10040122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This survey paper describes a literature review of deep learning (DL) methods for cyber security applications. A short tutorial-style description of each DL method is provided, including deep autoencoders, restricted Boltzmann machines, recurrent neural networks, generative adversarial networks, and several others. Then we discuss how each of the DL methods is used for security applications. We cover a broad array of attack types including malware, spam, insider threats, network intrusions, false data injection, and malicious domain names used by botnets.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50
  • [22] Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods
    Liu, Haoyue
    Chatterjee, Ishani
    Zhou, MengChu
    Lu, Xiaoyu Sean
    Abusorrah, Abdullah
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (06): : 1358 - 1375
  • [23] A Novel Cyber Security Model Using Deep Transfer Learning
    Cavusoglu, Unal
    Akgun, Devrim
    Hizal, Selman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 3623 - 3632
  • [24] Cyber Security Intruder Detection Using Deep Learning Approach
    Islam, Tariqul
    Rahman, Md Mosfikur
    Jabiullah, Md Ismail
    Saifuzzaman, Mohd
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 518 - 530
  • [25] A Novel Cyber Security Model Using Deep Transfer Learning
    Ünal Çavuşoğlu
    Devrim Akgun
    Selman Hizal
    Arabian Journal for Science and Engineering, 2024, 49 : 3623 - 3632
  • [26] Deep Learning in Microscopy Image Analysis: A Survey
    Xing, Fuyong
    Xie, Yuanpu
    Su, Hai
    Liu, Fujun
    Yang, Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4550 - 4568
  • [27] A Survey on Deep Learning for Human Activity Recognition
    Gu, Fuqiang
    Chung, Mu-Huan
    Chignell, Mark
    Valaee, Shahrokh
    Zhou, Baoding
    Liu, Xue
    ACM COMPUTING SURVEYS, 2021, 54 (08)
  • [28] Survey on deep learning for pulmonary medical imaging
    Ma, Jiechao
    Song, Yang
    Tian, Xi
    Hua, Yiting
    Zhang, Rongguo
    Wu, Jianlin
    FRONTIERS OF MEDICINE, 2020, 14 (04) : 450 - 469
  • [29] A Systematic Analysis of Enhancing Cyber Security Using Deep Learning for Cyber Physical Systems
    Gaba, Shivani
    Budhiraja, Ishan
    Kumar, Vimal
    Martha, Sheshikala
    Khurmi, Jebreel
    Singh, Akansha
    Singh, Krishna Kant
    Askar, S. S.
    Abouhawwash, Mohamed
    IEEE ACCESS, 2024, 12 : 6017 - 6035
  • [30] ISP Meets Deep Learning: A Survey on Deep Learning Methods for Image Signal Processing
    dos Santos, Claudio Filipi Goncalves
    Arrais, Rodrigo Reis
    da Silva, Jhessica Victoria Santos
    da Silva, Matheus Henrique Marques
    Neto, Wladimir Barroso Guedes de Araujo
    Lopes, Leonardo Tadeu
    Bileki, Guilherme Augusto
    Lima, Iago Oliveira
    Rondon, Lucas Borges
    de Souza, Bruno Melo
    Regazio, Mayara Costa
    Dalapicola, Rodolfo Coelho
    Tasca, Arthur Alves
    ACM COMPUTING SURVEYS, 2025, 57 (05)