Complex diffusion-weighted image estimation via matrix recovery under general noise models

被引:214
作者
Cordero-Grande, Lucilio [1 ,2 ]
Christiaens, Daan [1 ,2 ]
Hutter, Jana [1 ,2 ]
Price, Anthony N. [1 ,2 ]
Hajnal, Jo V. [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, St Thomas Hosp, Ctr Developing Brain,Kings Hlth Partners, London SE1 7EH, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, St Thomas Hosp, Biomed Engn Dept,Kings Hlth Partners, London SE1 7EH, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Diffusion weighted imaging; Rician bias; Random matrix denoising; Optimal shrinkage; Asymptotic risk; SAMPLE COVARIANCE MATRICES; MAGNETIC-RESONANCE IMAGES; OPTIMAL SHRINKAGE; SINGULAR-VALUES; RICIAN NOISE; EIGENVALUES; RECONSTRUCTION; SENSE; RATIO;
D O I
10.1016/j.neuroimage.2019.06.039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail.
引用
收藏
页码:391 / 404
页数:14
相关论文
共 56 条
[1]   Accelerated Regularized Estimation of MR Coil Sensitivities Using Augmented Lagrangian Methods [J].
Allison, Michael J. ;
Ramani, Sathish ;
Fessler, Jeffrey A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (03) :556-564
[2]   ANALYSIS AND CORRECTION OF MOTION ARTIFACTS IN-DIFFUSION WEIGHTED IMAGING [J].
ANDERSON, AW ;
GORE, JC .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (03) :379-387
[3]  
[Anonymous], 2019, ARXIV190209474
[4]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[5]  
Bammer R, 2010, DIFFUSION MRI, P218
[6]  
Basu S, 2006, LECT NOTES COMPUT SC, V4190, P117
[7]   The singular values and vectors of low rank perturbations of large rectangular random matrices [J].
Benaych-Georges, Florent ;
Nadakuditi, Raj Rao .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 :120-135
[8]   IMPROVED DETECTABILITY IN LOW SIGNAL-TO-NOISE RATIO MAGNETIC-RESONANCE IMAGES BY MEANS OF A PHASE-CORRECTED REAL RECONSTRUCTION [J].
BERNSTEIN, MA ;
THOMASSON, DM ;
PERMAN, WH .
MEDICAL PHYSICS, 1989, 16 (05) :813-817
[9]   Improved B0-Distortion Correction in Diffusion MRI Using Interlaced q-Space Sampling and Constrained Reconstruction [J].
Bhushan, Chitresh ;
Joshi, Anand A. ;
Leahy, Richard M. ;
Haldar, Justin P. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) :1218-1232
[10]   Noise reduction in multiple-echo data sets using singular value decomposition [J].
Bydder, Mark ;
Du, Jiang .
MAGNETIC RESONANCE IMAGING, 2006, 24 (07) :849-856