Microstructure and properties of Cu-Fe deformation processed in-situ composite

被引:54
作者
Zou, Jin [1 ]
Lu, De-Ping [1 ]
Fu, Qing-Feng [1 ]
Liu, Ke-Ming [2 ]
Jiang, Jiang [1 ]
机构
[1] Jiangxi Acad Sci, Jiangxi Key Lab Adv Copper & Tungsten Mat, Nanchang 330029, Jiangxi, Peoples R China
[2] Nanchang Inst Technol, Jiangxi Key Lab Precis Dr & Control, Nanchang 330099, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu-Fe deformation processed in-situ composite; Fiber structure; Strengthening mechanism; Conductivity; EVOLUTION; STRENGTH; ALLOY;
D O I
10.1016/j.vacuum.2019.05.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Focus on the preparation process of Cu-14Fe deformation processed in-situ composite, by studying the stage of solidification, deformation, and heat treatment, the evolution of microstructure and the improvement of material properties have been investigated. The primary Fe phase distributed parallel on the longitudinal section and bent on the cross section under the shear stress, finally form the lamellar fiber structure in the deformation process. With cumulative cold deformation strain, the enhancement of tensile strength is attributed to the combined action of fiber strengthening, dislocation strengthening and precipitation strengthening. The strengthening mechanism of Cu-Fe deformation processed in-situ composites follows Hall-Petch relation with heavy strain. Due to the resistivity depends on the influence of impurity scattering and dislocation scattering, the intermediate heat treatment can improve conductivity effectively.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 22 条
[11]  
Matsukawa M., 2010, TEION KOGAKU, V25, P265, DOI [10.2221/jcsj.25.265, DOI 10.2221/JCSJ.25.265]
[12]   The Nanostructured High Strength High Conductivity Cu Matrix Composites With Different BCC Metals Strengthening Filaments [J].
Pantsyrny, Victor ;
Shikov, Alexander ;
Khlebova, Natalia ;
Drobishev, Valery ;
Kozlenkova, Nina ;
Polikarpova, Maria ;
Belyakov, Nikolay ;
Kukina, Olga ;
Dmitriev, Vadim .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) :1610-1614
[13]  
Rdzawski Z., 2014, Physics, V74, P689
[14]  
Sakai Y, 2016, MRS ADV, V1, P1137, DOI 10.1557/adv.2015.4
[15]  
Shi GD., 2016, INT C EL, P957, DOI [10.1142/97898147401350098, DOI 10.1142/97898147401350098]
[16]   Basic aspects of the co-deformation of bcc/fcc materials [J].
Sinclair, CW ;
Embury, JD ;
Weatherly, GC .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 272 (01) :90-98
[17]   STRENGTHENING IN HEAVILY DEFORMATION PROCESSED CU-20-PERCENT NB [J].
SPITZIG, WA .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (06) :1085-1090
[18]   Effects of Ce addition on the Cu-Mg-Fe alloy hot deformation behavior [J].
Wang, Bingjie ;
Zhang, Yi ;
Tian, Baohong ;
An, Junchao ;
Volinsky, Alex A. ;
Sun, Huili ;
Liu, Yong ;
Song, Kexing .
VACUUM, 2018, 155 :594-603
[19]  
Xiaobo M.A., 2013, MAT REV, V24, P2787
[20]   Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process [J].
Yuan, Yuan ;
Li, Zhou ;
Xiao, Zhu ;
Zhao, Ziqian ;
Yang, Ziqi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 :454-460